Lrnr_solnp_density_quiet | R Documentation |
This version is a copy of sl3::Lrnr_solnp with additional consideration for users that want explicit control over printed output of solnp
R6Class
object.
This meta-learner provides fitting procedures for density estimation, finding
convex combinations of candidate density estimators by minimizing the
cross-validated negative log-likelihood loss of each candidate density. The
optimization problem is solved by making use of solnp
,
using Lagrange multipliers. For further details, consult the documentation of
the Rsolnp
package.
Learner object with methods for training and prediction. See
Lrnr_base
for documentation on learners.
trace=0
The value of the objective function and the parameters is printed at every major iteration (default 0).
tol=0
Relative tolerance on feasibility and optimality (default 1e-8, default in Rsolnp package is 1e-8).
...
Not currently used.
sl3::Lrnr_base
-> Lrnr_solnp_density_quiet
sl3::Lrnr_base$assert_trained()
sl3::Lrnr_base$base_chain()
sl3::Lrnr_base$base_predict()
sl3::Lrnr_base$base_train()
sl3::Lrnr_base$chain()
sl3::Lrnr_base$custom_chain()
sl3::Lrnr_base$get_outcome_range()
sl3::Lrnr_base$get_outcome_type()
sl3::Lrnr_base$predict()
sl3::Lrnr_base$predict_fold()
sl3::Lrnr_base$print()
sl3::Lrnr_base$process_formula()
sl3::Lrnr_base$reparameterize()
sl3::Lrnr_base$retrain()
sl3::Lrnr_base$sample()
sl3::Lrnr_base$set_train()
sl3::Lrnr_base$subset_covariates()
sl3::Lrnr_base$train()
sl3::Lrnr_base$train_sublearners()
new()
Lrnr_solnp_density_quiet$new(tol = 1e-05, trace = 0, ...)
clone()
The objects of this class are cloneable with this method.
Lrnr_solnp_density_quiet$clone(deep = FALSE)
deep
Whether to make a deep clone.
Other Learners:
Lrnr_density_gaussian
,
Lrnr_multinom
,
Lrnr_polspline_quiet
,
Lrnr_solnp_quiet
,
Lrnr_stepwise
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.