Lrnr_multinom | R Documentation |
This learner provides feed-forward neural networks with a single hidden layer, and for multinomial log-linear models.
R6Class
object.
Learner object with methods for both training and prediction. See
Lrnr_base
for documentation on learners.
formula
A formula of the form class ~ x1 + x2 + ...
weights
(case) weights for each example – if missing defaults to 1
size
number of units in the hidden layer. Can be zero if there are skip-layer units.
entropy
switch for entropy (= maximum conditional likelihood) fitting. Default by least-squares.
decay
parameter for weight decay. Default 0.
maxit
maximum number of iterations. Default 100.
linout
switch for linear output units. Default logistic output units.
...
Other parameters passed to
nnet
.
sl3::Lrnr_base
-> Lrnr_multinom
sl3::Lrnr_base$assert_trained()
sl3::Lrnr_base$base_chain()
sl3::Lrnr_base$base_predict()
sl3::Lrnr_base$base_train()
sl3::Lrnr_base$chain()
sl3::Lrnr_base$custom_chain()
sl3::Lrnr_base$get_outcome_range()
sl3::Lrnr_base$get_outcome_type()
sl3::Lrnr_base$predict()
sl3::Lrnr_base$predict_fold()
sl3::Lrnr_base$print()
sl3::Lrnr_base$process_formula()
sl3::Lrnr_base$reparameterize()
sl3::Lrnr_base$retrain()
sl3::Lrnr_base$sample()
sl3::Lrnr_base$set_train()
sl3::Lrnr_base$subset_covariates()
sl3::Lrnr_base$train()
sl3::Lrnr_base$train_sublearners()
new()
Lrnr_multinom$new(decay = 0, maxit = 100, linout = FALSE, ...)
clone()
The objects of this class are cloneable with this method.
Lrnr_multinom$clone(deep = FALSE)
deep
Whether to make a deep clone.
Other Learners:
Lrnr_density_gaussian
,
Lrnr_polspline_quiet
,
Lrnr_solnp_density_quiet
,
Lrnr_solnp_quiet
,
Lrnr_stepwise
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.