GblYield | R Documentation |
Generates global yield reports for each evaluated pool from previous results.
GblYield(samples, filtres, pm.res, int.res)
samples |
Data frame with relevant information to identify the samples of the sequencing experiment, including
|
filtres |
The data frame returned by |
pm.res |
The list returned by |
int.res |
The data frame returned by |
After execution, two report files will be saved in the reports folder:
GlobalYieldBarplots.pdf
: Includes some barplots representing the yield (in nÂș of
reads and percentage) by each step of the quality assessment pipeline. This
representation is done for all pools included in the analysis and also for global results.
GlobalYield-SumRprt.txt
: Summary report including global yield by analysis step in
number of reads, in percentage by step and percentage referred to raw reads.
This function is designed to be applied at the end of the quality assessment analysis and requires
the previous execution of FiltbyQ30
, demultiplexPrimer
and ConsHaplotypes
and functions from the same package.
Alicia Aranda
FiltbyQ30
, demultiplexPrimer
, ConsHaplotypes
## Execute FLASH extension runDir <- "./run" runfiles <- list.files(runDir,recursive=TRUE,full.names=TRUE,include.dirs=TRUE) flash <- "./FLASH/flash.exe" flashres <- R1R2toFLASH(runfiles,flash) ## Execute Q30 filtering flashDir <- "./flash" flashfiles <- list.files(flashDir,recursive=TRUE,full.names=TRUE,include.dirs=TRUE) filtres <- FiltbyQ30(max.pct=0.05,flashfiles,flashres) ## Execute demultiplexing by MID with default parameters flashFiltDir <- "./flashFilt" flashffiles <- list.files(flashFiltDir,recursive=TRUE,full.names=TRUE,include.dirs=TRUE) # Get data samples <- read.table("./data/samples.csv", sep="\t", header=T, colClasses="character",stringsAsFactors=F) mids <- read.table("./data/mids.csv", sep="\t", header=T, stringsAsFactors=F) dem.res<-demultiplexMID(flashffiles,samples,mids) ## Execute demultiplexing by primer splitDir <- "./splits" splitfiles <- list.files(splitDir,recursive=TRUE,full.names=TRUE,include.dirs=TRUE) pm.res <- demultiplexPrimer(splitfiles,samples,primers) ## Obtain consensus haplotypes (default parameters) trimDir <- "./trim" trimfiles <- list.files(trimDir,recursive=TRUE,full.names=TRUE,include.dirs=TRUE) int.res <- ConsHaplotypes(trimfiles, pm.res, thr, min.seq.len) ## Apply function GblYield(samples, filtres, pm.res, int.res)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.