logit_avgcat <- function(starts3, dat, otherdat, alts) {
#' Average catch multinomial logit procedure
#'
#' Average catch multinomial logit procedure
#'
#' @param starts3 Starting values as a vector (num). For this likelihood,
#' the order takes: c([average-catch parameters], [travel-distance
#' parameters]). \cr \cr
#' The average-catch and travel-distance parameters are of length (# of
#' average-catch variables)*(k-1) and (# of travel-distance variables
#' respectively, where (k) equals the number of alternatives.
#' @param dat Data matrix, see output from shift_sort_x, alternatives with
#' distance.
#' @param otherdat Other data used in model (as a list containing objects
#' `intdat` and `griddat`). \cr \cr
#' For this likelihood, `intdat` are "travel-distance variables", which
#' are alternative-invariant variables that are interacted with travel
#' distance to form the cost portion of the likelihood. Each variable
#' name therefore corresponds to data with dimensions (number of
#' observations) by (unity), and returns a single parameter. \cr \cr
#' In `griddat` are "average-catch variables" that do not vary across
#' alternatives, e.g. vessel gross tonnage. Each variable name therefore
#' corresponds to data with dimensions (number of observations) by
#' (unity), and returns (k-1) parameters where (k) equals the number of
#' alternatives, as a normalization of parameters is needed as the
#' probabilities sum to one. Interpretation is therefore relative to the
#' first alternative. \cr \cr
#' For both objects any number of variables are allowed, as a list of
#' matrices. Note the variables (each as a matrix) within `griddat` and
#' `intdat` have no naming restrictions. "Average-catch variables"
#' may correspond to variables that impact average catches by location,
#' or "travel-distance variables" may be vessel characteristics that
#' affect how much disutility is suffered by traveling a greater
#' distance. Note in this likelihood the "average-catch variables" vary
#' across observations but not for each location: they are allowed to
#' affect alternatives differently due to the location-specific
#' coefficients. \cr \cr
#' If there are no other data, the user can set `griddat` as ones with
#' dimension (number of observations) by (unity) and `intdat` variables
#' as ones with dimension (number of observations) by (unity).
#' @param alts Number of alternative choices in model as length equal to
#' unity (as a numeric vector).
#' @return ld: negative log likelihood
#' @export
#' @examples
#' data(zi)
#' data(catch)
#' data(choice)
#' data(distance)
#' data(si)
#'
#' optimOpt <- c(1000,1.00000000000000e-08,1,0)
#'
#' methodname <- 'BFGS'
#'
#' si2 <- sample(1:5,dim(si)[1],replace=TRUE)
#' zi2 <- sample(1:10,dim(zi)[1],replace=TRUE)
#'
#' otherdat <- list(griddat=list(si=as.matrix(si),si2=as.matrix(si2)),
#' intdat=list(zi=as.matrix(zi),zi2=as.matrix(zi2)))
#'
#' initparams <- c(1.5, 1.25, 1.0, 0.9, 0.8, 0.75, -1, -0.5)
#'
#' func <- logit_avgcat
#'
#' results <- discretefish_subroutine(catch,choice,distance,otherdat,
#' initparams,optimOpt,func,methodname)
#'
#' @section Graphical examples:
#' \if{html}{
#' \figure{logit_avgcat_grid.png}{options: width="40\%"
#' alt="Figure: logit_avgcat_grid.png"}
#' \cr
#' \figure{logit_avgcat_travel.png}{options: width="40\%"
#' alt="Figure: logit_avgcat_travel.png"}
#' }
#'
griddat <- as.matrix(do.call(cbind, otherdat$griddat))
intdat <- as.matrix(do.call(cbind, otherdat$intdat))
gridnum <- dim(griddat)[2]
intnum <- dim(intdat)[2]
# get number of variables
obsnum <- dim(griddat)[1]
starts3 <- as.matrix(starts3)
gridcoef <- as.matrix(starts3[1:(gridnum * (alts - 1)), ])
intcoef <- as.matrix(starts3[((gridnum * (alts - 1)) + 1):
(((gridnum * (alts - 1))) + intnum), ])
gridbetas <- (matrix(gridcoef, obsnum, (alts - 1) * gridnum, byrow = TRUE) *
griddat[, rep(1:gridnum, each = (alts - 1))])
dim(gridbetas) <- c(nrow(gridbetas), (alts - 1), gridnum)
gridbetas <- rowSums(gridbetas, dim = 2)
intbetas <- .rowSums(intdat * matrix(intcoef, obsnum, intnum, byrow = TRUE),
obsnum, intnum)
betas <- matrix(c(gridbetas, intbetas), obsnum, (alts - 1 + 1))
djztemp <- betas[1:obsnum, rep(1:ncol(betas), each = (alts))] *
dat[, (alts + 3):(dim(dat)[2])]
dim(djztemp) <- c(nrow(djztemp), ncol(djztemp)/((alts - 1) + 1),
(alts - 1) + 1)
prof <- rowSums(djztemp, dim = 2)
profx <- prof - prof[, 1]
exb <- exp(profx)
ldchoice <- (-log(rowSums(exb)))
ld <- -sum(ldchoice)
if (is.nan(ld) == TRUE) {
ld <- .Machine$double.xmax
}
ldsumglobalcheck <- ld
assign("ldsumglobalcheck", value = ldsumglobalcheck, pos = 1)
paramsglobalcheck <- starts3
assign("paramsglobalcheck", value = paramsglobalcheck, pos = 1)
ldglobalcheck <- unlist(as.matrix(ldchoice))
assign("ldglobalcheck", value = ldglobalcheck, pos = 1)
return(ld)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.