R/logit_avgcat.r

Defines functions logit_avgcat

Documented in logit_avgcat

logit_avgcat <- function(starts3, dat, otherdat, alts) {
    #' Average catch multinomial logit procedure
    #'
    #' Average catch multinomial logit procedure
    #'
    #' @param starts3 Starting values as a vector (num). For this likelihood,
    #'     the order takes: c([average-catch parameters], [travel-distance
    #'     parameters]). \cr \cr
    #'     The average-catch and travel-distance parameters are of length (# of
    #'     average-catch variables)*(k-1) and (# of travel-distance variables
    #'     respectively, where (k) equals the number of alternatives.
    #' @param dat Data matrix, see output from shift_sort_x, alternatives with
    #'     distance.
    #' @param otherdat Other data used in model (as a list containing objects
    #'     `intdat` and `griddat`). \cr \cr
    #'     For this likelihood, `intdat` are "travel-distance variables", which
    #'     are alternative-invariant variables that are interacted with travel
    #'     distance to form the cost portion of the likelihood. Each variable
    #'     name therefore corresponds to data with dimensions (number of
    #'     observations) by (unity), and returns a single parameter. \cr \cr
    #'     In `griddat` are "average-catch variables" that do not vary across
    #'     alternatives, e.g. vessel gross tonnage. Each variable name therefore
    #'     corresponds to data with dimensions (number of observations) by
    #'     (unity), and returns (k-1) parameters where (k) equals the number of
    #'     alternatives, as a normalization of parameters is needed as the
    #'     probabilities sum to one. Interpretation is therefore relative to the
    #'     first alternative. \cr \cr
    #'     For both objects any number of variables are allowed, as a list of
    #'     matrices. Note the variables (each as a matrix) within `griddat` and
    #'     `intdat` have no naming restrictions. "Average-catch variables"
    #'     may correspond to variables that impact average catches by location,
    #'     or "travel-distance variables" may be vessel characteristics that
    #'     affect how much disutility is suffered by traveling a greater
    #'     distance. Note in this likelihood the "average-catch variables" vary
    #'     across observations but not for each location: they are allowed to
    #'     affect alternatives differently due to the location-specific
    #'     coefficients. \cr \cr
    #'     If there are no other data, the user can set `griddat` as ones with
    #'     dimension (number of observations) by (unity) and `intdat` variables
    #'     as ones with dimension (number of observations) by (unity).
    #' @param alts Number of alternative choices in model as length equal to
    #'     unity (as a numeric vector).
    #' @return ld: negative log likelihood
    #' @export
    #' @examples
    #' data(zi)
    #' data(catch)
    #' data(choice)
    #' data(distance)
    #' data(si)
    #'
    #' optimOpt <- c(1000,1.00000000000000e-08,1,0)
    #'
    #' methodname <- 'BFGS'
    #'
    #' si2 <- sample(1:5,dim(si)[1],replace=TRUE)
    #' zi2 <- sample(1:10,dim(zi)[1],replace=TRUE)
    #'
    #' otherdat <- list(griddat=list(si=as.matrix(si),si2=as.matrix(si2)),
    #'     intdat=list(zi=as.matrix(zi),zi2=as.matrix(zi2)))
    #'
    #' initparams <- c(1.5, 1.25, 1.0, 0.9, 0.8, 0.75, -1, -0.5)
    #'
    #' func <- logit_avgcat
    #'
    #' results <- discretefish_subroutine(catch,choice,distance,otherdat,
    #'     initparams,optimOpt,func,methodname)
    #'
    #' @section Graphical examples: 
    #' \if{html}{
    #' \figure{logit_avgcat_grid.png}{options: width="40\%" 
    #' alt="Figure: logit_avgcat_grid.png"}
    #' \cr
    #' \figure{logit_avgcat_travel.png}{options: width="40\%" 
    #' alt="Figure: logit_avgcat_travel.png"}
    #' }
    #'
        
    griddat <- as.matrix(do.call(cbind, otherdat$griddat))
    intdat <- as.matrix(do.call(cbind, otherdat$intdat))
    
    gridnum <- dim(griddat)[2]
    intnum <- dim(intdat)[2]
    # get number of variables
    
    obsnum <- dim(griddat)[1]
    
    starts3 <- as.matrix(starts3)
    gridcoef <- as.matrix(starts3[1:(gridnum * (alts - 1)), ])
    intcoef <- as.matrix(starts3[((gridnum * (alts - 1)) + 1):
        (((gridnum * (alts - 1))) + intnum), ])
    
    gridbetas <- (matrix(gridcoef, obsnum, (alts - 1) * gridnum, byrow = TRUE) *
        griddat[, rep(1:gridnum, each = (alts - 1))])
    dim(gridbetas) <- c(nrow(gridbetas), (alts - 1), gridnum)
    gridbetas <- rowSums(gridbetas, dim = 2)
    
    intbetas <- .rowSums(intdat * matrix(intcoef, obsnum, intnum, byrow = TRUE), 
        obsnum, intnum)
    
    betas <- matrix(c(gridbetas, intbetas), obsnum, (alts - 1 + 1))
    
    djztemp <- betas[1:obsnum, rep(1:ncol(betas), each = (alts))] *
        dat[, (alts + 3):(dim(dat)[2])]
    dim(djztemp) <- c(nrow(djztemp), ncol(djztemp)/((alts - 1) + 1),
        (alts - 1) + 1)
    
    prof <- rowSums(djztemp, dim = 2)
    profx <- prof - prof[, 1]
    
    exb <- exp(profx)
    
    ldchoice <- (-log(rowSums(exb)))
    
    ld <- -sum(ldchoice)
    
    if (is.nan(ld) == TRUE) {
        ld <- .Machine$double.xmax
    }
    
    ldsumglobalcheck <- ld
    assign("ldsumglobalcheck", value = ldsumglobalcheck, pos = 1)
    paramsglobalcheck <- starts3
    assign("paramsglobalcheck", value = paramsglobalcheck, pos = 1)
    ldglobalcheck <- unlist(as.matrix(ldchoice))
    assign("ldglobalcheck", value = ldglobalcheck, pos = 1)
    
    return(ld)
    
}
allen-chen-noaa-gov/barebones.FishSET documentation built on March 1, 2024, 8:19 a.m.