Description Usage Arguments Details Value References See Also Examples
Compute the map of the posterior completeness magnitude and posterior standard error based on the maps of the observed and predicted completeness magnitudes.
1 | bmc.bayes(mc.obs, mc.pred, sigma.pred)
|
mc.obs |
a data frame of 4 parameters defined by the function
|
mc.pred |
a vector of mc predicted values per cell |
sigma.pred |
a vector of the BMC prior model standard deviation, repeated for all cells |
This is the final step of the Bayesian Magnitude of Completeness (BMC) method (Mignan et al., 2011).
The data frame of 8 parameters:
lon
the longitude of the cell center
lat
the latitude of the cell center
mc.obs
the observed mc in the cell
sigma.obs
the observed standard error in the cell
mc.pred
the predicted mc in the cell
sigma.pred
the prior model standard deviation in the cell
mc.post
the posterior mc in the cell
sigma.post
the posterior standard error in the cell
Mignan, A., Werner, M.J., Wiemer, S., Chen, C.-C., Wu, Y.-M. (2011), Bayesian Estimation of the Spatially Varying Completeness Magnitude of Earthquake Catalogs, Bull. Seismol. Soc. Am., 101, 1371-1385, doi: 10.1785/0120100223
bmc
; bmc.prior
; bmc.prior.default
; mc.geogr
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | # download the Southern California relocated catalogue of Hauksson et al. (2012)
url <- "http://service.scedc.caltech.edu/ftp/catalogs/"
cat <- "hauksson/Socal_DD/hs_1981_2011_06_comb_K2_A.cat_so_SCSN_v01"
dat <- scan(paste(url, cat, sep = ""), what = "character", sep = "\n")
yr <- as.numeric(substr(dat, start=1, stop=4))
lat <- as.numeric(substr(dat, start=35, stop=42))
lon <- as.numeric(substr(dat, start=44, stop=53))
m <- as.numeric(substr(dat, start=63, stop=67))
seism <- data.frame(yr = yr, lon = lon,lat = lat, m = m)
# reduce catalogue size for faster computation
seism <- subset(seism, yr >= 2008)
# download the Southern California seismic network data
url <- "http://service.scedc.caltech.edu/station/weblist.php"
dat <- scan(url, what = "character", sep = "\n", skip = 7)
network <- substr(dat, start = 1, stop = 2)
sta.name <- substr(dat, start = 5, stop = 9)
sta.lat <- as.numeric(substr(dat, start = 52, stop = 59))
sta.lon <- as.numeric(substr(dat, start = 61, stop = 70))
sta.on <- as.numeric(substr(dat, start = 78, stop = 81))
sta.off <- as.numeric(substr(dat, start = 89, stop = 92))
stations <- data.frame(lon = sta.lon, lat = sta.lat, name = sta.name)
stations <- subset(stations, (network == "CI" & sta.off > min(seism$yr) & sta.on < max(seism$yr)))
stations <- subset(stations, (duplicated(name) == F))
# map the observed mc & predicted mc (quick & dirty)
mc.obs <- mc.geogr(seism, "mode", "grid", dbin = 0.1, n.bootstrap = 100)
prior <- bmc.prior(mc.obs, stations)
mc.pred <- (prior[[1]]$c1 * prior[[2]]$d.kth ^ prior[[1]]$c2 + prior[[1]]$c3)
sigma.pred <- rep(prior[[1]]$sigma, nrow(mc.obs))
res <- bmc.bayes(mc.obs, mc.pred, sigma.pred)
#display the 6 BMC maps (mc.obs, mc.pred, mc.post, sigma.obs, sigma.pred, sigma.post)
image(matrix(res$mc.obs, nrow=length(unique(res$lon)), ncol=length(unique(res$lat))))
image(matrix(res$mc.pred, nrow=length(unique(res$lon)), ncol=length(unique(res$lat))))
image(matrix(res$mc.post, nrow=length(unique(res$lon)), ncol=length(unique(res$lat))))
image(matrix(res$sigma.obs, nrow=length(unique(res$lon)), ncol=length(unique(res$lat))))
image(matrix(res$sigma.pred, nrow=length(unique(res$lon)), ncol=length(unique(res$lat))))
image(matrix(res$sigma.post, nrow=length(unique(res$lon)), ncol=length(unique(res$lat))))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.