Description Usage Arguments Details Value References See Also Examples
Map the completeness magnitude mc for a seismicity data
frame seism
, following one of three possible geographical mappings (see Details).
1 2 3 |
seism |
an earthquake catalog data frame of parameters:
|
method |
the method to be used to evaluate mc: |
mapping |
the mapping to be used: |
mbin |
the magnitude binning value (if not provided, |
box |
a vector of the minimum longitude, maximum longitude, minimum latitude and
maximum latitude, in this order (if not provided, |
dbin |
the spatial binning value (if not provided, |
nmin |
the minimum number of earthquakes required to evaluate
mc (if not provided, |
R |
the cylinder radius in kilometers for |
stations |
the seismic network data frame for
|
kth |
the kth nearest seismic station used for
distance calculation in |
params |
the BMC prior parameter list to be used for
|
dist.calc |
the method to be used to evaluate distances (if not provided,
|
n.bootstrap |
the number of bootstraps (if not provided, |
"mapping = grid"
computes mc for earthquakes located in
each cell of bin size dbin
.
"mapping = circle.cst"
computes mc for earthquakes located
in cylinders centered on each cell and with radius R
(see the smoothing impact of
increasing radius in Mignan et al., 2011).
"mapping = circle.opt"
computes mc for earthquakes located
in cylinders centered on each cell and with variable radius estimated from the seismic
network spatial density (Mignan et al., 2011). This method aims at minimizing
mc spatial heterogeneities by using a smaller radius in the dense
parts of the network where mc changes faster.
The completeness magnitude mc is evaluated for n.bootstrap
bootstraps, with mc.obs
the mean value and sigma.obs
the standard error. For
n.bootstrap = 0
, sigma.obs = NA
.
The function calls geosphere::distHaversine
to calculate distances between
geographical points.
The data frame of 4 parameters:
lon
the longitude of the cell center
lat
the latitude of the cell center
mc.obs
the completeness magnitude mc observed in the cell
sigma.obs
the mc standard error in the cell
Mignan, A., Werner, M.J., Wiemer, S., Chen, C.-C., Wu, Y.-M. (2011), Bayesian Estimation of the Spatially Varying Completeness Magnitude of Earthquake Catalogs, Bull. Seismol. Soc. Am., 101, 1371-1385, doi: 10.1785/0120100223
bmc.prior
; bmc.prior.default
; d.geogr2km
; mc.val
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | # download the Southern California relocated catalogue of Hauksson et al. (2012)
url <- "http://service.scedc.caltech.edu/ftp/catalogs/"
cat <- "hauksson/Socal_DD/hs_1981_2011_06_comb_K2_A.cat_so_SCSN_v01"
dat <- scan(paste(url, cat, sep = ""), what = "character", sep = "\n")
yr <- as.numeric(substr(dat, start=1, stop=4))
lat <- as.numeric(substr(dat, start=35, stop=42))
lon <- as.numeric(substr(dat, start=44, stop=53))
m <- as.numeric(substr(dat, start=63, stop=67))
seism <- data.frame(yr = yr, lon = lon, lat = lat, m = m)
# reduce catalogue size for faster computation
seism <- subset(seism, yr >= 2008)
# map mc in a grid
mc.grid <- mc.geogr(seism, "mode", "grid", dbin = 0.1)
image(matrix(mc.grid$mc.obs, nrow=length(unique(mc.grid$lon)), ncol=length(unique(mc.grid$lat))))
# map mc with cylinder smoothing (this may take a few minutes!)
mc.cst <- mc.geogr(seism, "mbass", "circle.cst", dbin = 0.1, R = 20)
image(matrix(mc.cst$mc.obs, nrow=length(unique(mc.cst$lon)), ncol=length(unique(mc.cst$lat))))
# download the Southern California seismic network data
url <- "http://service.scedc.caltech.edu/station/weblist.php"
dat <- scan(url, what = "character", sep = "\n", skip = 7)
network <- substr(dat, start = 1, stop = 2)
sta.name <- substr(dat, start = 5, stop = 9)
sta.lat <- as.numeric(substr(dat, start = 52, stop = 59))
sta.lon <- as.numeric(substr(dat, start = 61, stop = 70))
sta.on <- as.numeric(substr(dat, start = 78, stop = 81))
sta.off <- as.numeric(substr(dat, start = 89, stop = 92))
stations <- data.frame(lon = sta.lon, lat = sta.lat, name = sta.name)
stations <- subset(stations, (network == "CI" & sta.off > min(seism$yr) & sta.on < max(seism$yr)))
stations <- subset(stations, (duplicated(name) == F))
# map mc with optimal sample size (this takes a few minutes!)
# (minimizes mc heterogeneities while maximizing sample size)
mc.opt <- mc.geogr(seism, "mode", "circle.opt", dbin = 0.1, stations = stations)
image(matrix(mc.opt$mc.obs, nrow=length(unique(mc.opt$lon)), ncol=length(unique(mc.opt$lat))))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.