efmd.sim: Simulation of the Elemental FMD

Description Usage Arguments Details Value References See Also Examples

Description

Simulate the elemental earthquake frequency magnitude distribution (eFMD) by applying the Inversion Method (Devroye, 1986) to the angular FMD model of Mignan (2012).

Usage

1
efmd.sim(N, theta, mbin = 0.1)

Arguments

N

the number of earthquakes to simulate

theta

a list of 3 parameters:

  • kappa the detection parameter value

  • beta the Gutenberg-Richter parameter value

  • mc the completeness magnitude value

mbin

the magnitude binning value (if not provided, mbin = 0.1)

Details

The angular FMD model is defined as an Asymmetric Laplace distribution. It has an angular shape in the log-lin space and corresponds to the case where the completeness magnitude mc is constant (read more in Mignan, 2012; Mignan and Chen, 2016).

Value

A numeric vector of N earthquake magnitudes.

References

Devroye, L. (1986), Non-Uniform Random Variate Generation, Springer-Verlag New York Inc., New York, 843 pp.

Mignan, A. (2012), Functional shape of the earthquake frequency-magnitude distribution and completeness magnitude, J. Geophys. Res., 117, B08302, doi: 10.1029/2012JB009347

Mignan, A., Chen, C.-C. (2016), The Spatial Scale of Detected Seismicity, Pure Appl. Geophys., 173, 117-124, doi: 10.1007/s00024-015-1133-7

See Also

beta.mle; mc.val

Examples

1
2
3
4
5
theta <- list(kappa = 3 * log(10), beta = log(10), mc = 2)
m.sim <- efmd.sim(1e4, theta)
mdistr <- fmd(m.sim)
plot(mdistr$mi, mdistr$Ni, log = "y")
points(mdistr$mi, mdistr$ni)

amignan/rseismNet documentation built on July 8, 2019, 6:53 p.m.