Description Usage Arguments Value Please cite as: Author(s) References See Also Examples
DynNom
is a generic function for displaying the results of an statistical model object as a dynamic nomogram in an 'RStudio' panel or web browser. DynNom
supports a variety of model objects; lm
, glm
, coxph
and also Ols
, Glm
, lrm
, cph
models in the rms
package. It is a translational tool aiming to provide easy, informative individual predictions.
1 2 3 |
model |
an |
data |
dataframe containing the accompanying data |
clevel |
confidence level required |
covariate |
The option to choose the type of covariate(s) input control widget for numeric values. If "slider" (the default) is chosen a shiny application with slider control widgets are used while if "numeric" is chosen numeric values input controls will be displayed. |
ptype |
This plot type option relates to coxph objects only. If "st" (the default) is chosen, a plot of the estimated survivor function, S(t), is displayed. If "1-st" is chosen a plot of 1- S(t) is displayed. |
A dynamic nomogram in a shiny application which recognises all the predictors in the model and uses them to build a sidebar panel. It sets up drop down menus for factors and sliders set at the mean and bounded by the range for covariates.
The individual predictions with a relative confidence interval are calculated using the predict
function, displaying either graphically as an interactive plot in the Graphical Summary
tab or a table in the Numerical Summary
tab. A table of model output is also available in the Model Summary
tab. In the case of the Cox proportional hazards model, estimated survivor/death function will be additionally plotted in an extra tab.
Jalali, A., Roshan, D., Alvarez-Iglesias, A., Newell, J. (2016). Dynamic Nomograms for Linear, Generalized Linear and Proportional Hazard Models. R package version 3.0.
Amirhossein Jalali, Davood Roshan, Alberto Alvarez-Iglesias, John Newell
Maintainer: Amirhossein Jalali <a.jalali2@nuigalway.ie>
Banks, J. 2006. Nomograms. Encyclopedia of Statistical Sciences. 8.
Easy web applications in R. http://shiny.rstudio.com
Frank E Harrell Jr (2016). rms: Regression Modeling Strategies. R package version 4.5-0.
https://CRAN.R-project.org/package=rms
DynNom.lm
, DynNom.glm
, DynNom.coxph
, DynNom.ols
, DynNom.lrm
, DynNom.Glm
, DynNom.cph
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | ## Not run:
# simple linear regression models
model1 <- lm(uptake ~ Plant + conc + Plant * conc, data = CO2)
DynNom(model1, CO2)
data1 <- data.frame(state.x77)
model2 <- ols(Life.Exp ~ Population + Income + Illiteracy + Murder + HS.Grad +
Frost + Area,data=data1)
DynNom(model2, data1)
# Generalized regression models
data2 =as.data.frame(Titanic)
model3 <- glm(Survived ~ Age + Class + Sex, data = data2, weights = Freq,
family = binomial("probit"))
DynNom(model3, data2, clevel = 0.9)
model4 <- lrm(formula= vs ~ wt + disp, data = mtcars)
DynNom(model4, mtcars, clevel = 0.9)
counts <- c(18, 17, 15, 20, 10, 20, 25, 13, 12)
outcome <- gl(3, 1, 9)
treatment <- gl(3, 3)
data2 = data.frame(counts, outcome, treatment)
model5 <- Glm((2 * counts) ~ outcome + treatment, family = poisson(), data = data2)
DynNom.Glm(model5, data2)
# a proportional hazard model
data.kidney <- kidney
# always make sure that the categorical variables are in a factor class
data.kidney$sex <- as.factor(data.kidney$sex)
levels(data.kidney$sex) <- c("male", "female")
model6 <- coxph(Surv(time, status) ~ age + sex + disease, data.kidney)
DynNom(model6, data.kidney)
DynNom(model6, data.kidney, ptype = "1-st")
model7 <-cph((Surv(log(time), status)) ~ rcs(age, 4) * strat(trt) +
diagtime * strat(prior) + lsp(karno, 60), data = veteran)
DynNom(model7, veteran)
## End(Not run)
if (interactive()) {
# a poisson regression model
model8 <- glm(event ~ mag + station + dist + accel, data = attenu, family = poisson)
DynNom(model8, attenu, covariate = "numeric")
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.