Description Usage Arguments Value Examples
Computes direct and total causal effects of a list of GBN objects.
This function enables to get back the trajectories of direct and undirect causal effects through a MCMC.GBN run.
1 | causalEffects(full.run)
|
full.run |
list - full.run can be a result of MCMC.GBN function. It's a list of gaussian bayesian networks. They must have the same number of nodes and the same names. |
This function returns a list of two arguments :
alphaRes |
matrix - direct causal effects. The ith line of alphaRes corresponds to the direct causal effects matrix of the ith GBN of full.run. |
betaRes |
matrix - total causal effects. The ith line of alphaRes corresponds to the direct causal effects matrix of the ith GBN of full.run. |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | seed = 1990
n = 3000
p <- 10
m<-rep(0,10)
sigma<-rep(0.1,10)
W <- 1*upper.tri(matrix(0,p,p))
data <- dataCreate(nbData = 2*p, p = 10,KO = list(1,9), nbKO = c(p,p), W = W , m = m,sigma = sigma, seed = seed)$data
# Initial Value
W1=1*upper.tri(matrix(0,p,p))
m1=rep(0,p)
s1=rep(10e-4,p)
colnames(W1)=names(m1)=names(s1)=rownames(W1)=paste("N",1:p,sep="")
firstGBN = new("GBNetwork",WeightMatrix=W1,resMean=m1,resSigma=s1)
firstGBN = GBNmle(firstGBN,data,lambda= 0,sigmapre=s1)$GBN
# Algorithm
results=MCMC.GBN(data, firstGBN, nbSimulation=2000, burnIn=20, seq=1, verbose=TRUE,verbose.index=100,
alpha=1,lambda=0)
alphaRes <- causalEffects(results$full.run)$alphaRes
betaRes <- causalEffects(results$full.run)$betaRes
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.