# ------------------------------------------
# Set working directory and load libraries
# ------------------------------------------
if (interactive()) {cur.dir <- dirname(parent.frame(2)$ofile); setwd(cur.dir)}
R.utils::sourceDirectory("../../../lib", modifiedOnly = FALSE)
suppressPackageStartupMessages(library(BPRMeth))
suppressPackageStartupMessages(library(data.table))
suppressPackageStartupMessages(library(matrixcalc))
suppressPackageStartupMessages(library(ROCR))
suppressPackageStartupMessages(library(parallel))
suppressPackageStartupMessages(require(Matrix))
##set.seed(123)
##------------------------------------
# Load preprocessed data
##------------------------------------
io <- list(dataset = "ENCODE", data_file = "prom10k", cov = 10, sd = 0.05)
io$data_dir = "../../../local-data/melissa/"
io$out_dir = paste0(io$data_dir, io$dataset, "/imputation/")
dt <- readRDS(paste0(io$data_dir, "met/filtered_met/", io$dataset, "/", io$data_file,
"_cov", io$cov, "_sd", io$sd, ".rds"))
##------------------------------------
# Initialize parameters
##------------------------------------
opts <- dt$opts
opts$K <- 3 # Number of clusters
opts$N <- length(dt$met) # Number of cells
opts$M <- length(dt$met[[1]]) # Number of genomic regions
opts$delta_0 <- rep(3, opts$K) #+ rbeta(opts$K, 1e-1, 1e2) # Dirichlet prior
opts$alpha_0 <- .5 # Gamma prior
opts$beta_0 <- NULL # Gamma prior
opts$filt_region_cov <- 0.5 # Filter low covered genomic regions
opts$data_train_prcg <- 0.4 # % of data to keep fully for training
opts$region_train_prcg <- 0.95 # % of regions kept for training
opts$cpg_train_prcg <- 0.5 # % of CpGs kept for training in each region
opts$is_kmeans <- TRUE # Use K-means for initialization
opts$vb_max_iter <- 500 # Maximum VB iterations
opts$epsilon_conv <- 1e-4 # Convergence threshold for VB
opts$vb_init_nstart <- 2 # Mini VB restarts
opts$vb_init_max_iter <- 6 # Mini VB iteratiions
opts$is_parallel <- TRUE # Use parallelized version
opts$no_cores <- 2 # Number of cores
opts$total_sims <- 1 # Number of simulations
opts$basis_prof <- create_rbf_object(M = 9) # Profile basis functions
opts$basis_mean <- create_rbf_object(M = 0) # Rate basis function
##----------------------------------------------
# Filtering low covered regions across cells
##----------------------------------------------
dt <- filter_regions_across_cells(dt = dt, opts = opts)
anno_region <- dt$anno_region
annos <- dt$annos
met <- dt$met
opts$cell_names <- names(met)
opts$M <- length(met[[1]]) # Number of genomic regions
print(opts$M)
rm(dt)
# Partition to training and test sets
dt <- partition_dataset(X = met, data_train_prcg = opts$data_train_prcg,
region_train_prcg = opts$region_train_prcg,
cpg_train_prcg = opts$cpg_train_prcg, is_synth = FALSE)
rm(met)
melissa_obj <- melissa_vb(X = dt$train, K = opts$K, basis = opts$basis_prof,
delta_0 = opts$delta_0, alpha_0 = opts$alpha_0, beta_0 = opts$beta_0,
vb_max_iter = opts$vb_max_iter, epsilon_conv = opts$epsilon_conv,
is_kmeans = opts$is_kmeans, vb_init_nstart = opts$vb_init_nstart,
vb_init_max_iter = opts$vb_init_max_iter, is_parallel = TRUE,
no_cores = 2, is_verbose = TRUE)
##----------------------------------------------------------------------
message("Storing results...")
##----------------------------------------------------------------------
obj <- list(model = model, annos = annos, anno_region = anno_region, io = io, opts = opts)
saveRDS(obj, file = paste0(io$out_dir, "melissa_sim", opts$total_sims,
"_", io$data_file,
"_cov", io$cov,
"_sd", io$sd,
"_K", opts$K,
"_M", opts$M,
"_basis", opts$basis_prof$M,
"_dataPrcg", opts$data_train_prcg,
"_regionPrcg", opts$region_train_prcg,
"_cpgPrcg", opts$cpg_train_prcg,
"_filter", opts$filt_region_cov, ".rds") )
##----------------------------------------------------------------------
message(io$data_file)
message(opts$basis_prof$M)
message("Done ...")
##----------------------------------------------------------------------
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.