##' load-data.R - loading in and tidying up data
##' Load in the detailed linelist data and exclude un-needed columns
##'
##' Load in the detailed linelist data and exclude un-needed columns (that may
##' want to be looked at some point) and outliers of negative delays and delays
##' >30 days (since likely data-input errors). Data are not public (yet) and so
##' this function will not work for everyone.
##'
##' @return list of two tibbles with columns `reported_date`, `symptom_onset_date and
##' `time_to_report` with each row corresponding to a positive test:
##' - delay_data_with_outliers -- with the outliers still included
##' - delay_data -- with outliers excluded, to use for analyses
##' @export
##' @author Andrew Edwards
load_tidy_delay_data <- function(){
linelist_latest_file <-
# here::here("../CoronaModelsBC/nCoVDailyData/linelist/2019-nCoV_daily_linelist.csv")
here::here("../CoronaModelsBC/nCoVDailyData/HALinelist/BCCDC_HA_linelist.csv")
if(!file.exists(linelist_latest_file)){
stop(paste("You need to have the file ",
linelist_latest_file,
" ."))
}
linelist <- read.csv(linelist_latest_file,
stringsAsFactors = F,
na.strings = "")
names(linelist)[1] = "investigation_id" # else it seems to be "i..investigation_id"
delay_data_with_outliers = dplyr::as_tibble(linelist) %>%
dplyr::select(reported_date, symptom_onset_date) %>%
dplyr::mutate_all(lubridate::ymd) %>%
dplyr::filter(!is.na(reported_date) & !is.na(symptom_onset_date)) %>%
dplyr::mutate(time_to_report = reported_date - symptom_onset_date)
# Removing the following outliers that are $<0$ or $\geq 30$ days, since most
# likely to be data-entry errors, to yield the final dataset.
# filter(delay_data_with_outliers,
# time_to_report >= 30 | time_to_report < 0)
delay_data <- dplyr::filter(delay_data_with_outliers,
time_to_report < 30 & time_to_report >= 0)
return(list("delay_data" = delay_data,
"delay_data_with_outliers" = delay_data_with_outliers))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.