## Export: inla.graph2matrix inla.spy
##!\name{graph2matrix}
##!\alias{graph2matrix}
##!\alias{inla.graph2matrix}
##!\alias{spy}
##!\alias{inla.spy}
##!\title{Construct a neighbour-matrix from a \code{graph}}
##!\description{Construct a neighbour-matrix from a \code{graph} and disaply it}
##!\usage{
##! inla.graph2matrix(graph, ...)
##! inla.spy(graph, ..., reordering = NULL, factor = 1.0, max.dim = NULL)
##!}
##!\arguments{
##! \item{graph}{An \code{inla.graph}-object, a (sparse) symmetric matrix, a filename containing the graph,
##! or a list or collection of characters and/or numbers defining the graph.}
##! \item{reordering}{A possible reordering. Typical the one obtained from a \code{inla}-call, \code{result$misc$reordering},
##! or the result of \code{inla.qreordering}.}
##! \item{factor}{A scaling of the \code{inla.graph}-object to reduce the size.}
##! \item{max.dim}{Maximum dimension of the \code{inla.graph}-object plotted;
##! if \code{missing(factor)} and \code{max.dim} is set, then \code{factor}
##! is computed automatically to give the given \code{max.dim}.}
##! \item{...}{Additional arguments to \code{inla.read.graph()}}
##!}
##!\value{
##! \code{inla.graph2matrix} returns a sparse symmetric matrix where the non-zero pattern is defined by the \code{graph}.
##! The \code{inla.spy} function, plots a binary image of a \code{graph}. The \code{reordering} argument
##! is typically the reordering used by \code{inla}, found in \code{result$misc$reordering}.
##!}
##!\author{Havard Rue \email{hrue@math.ntnu.no}}
##!\seealso{
##! \code{\link{inla.read.graph}}, \code{inla.qreordering}
##!}
##!\examples{
##!n = 50
##!Q = matrix(0, n, n)
##!idx = sample(1:n, 2*n, replace=TRUE)
##!Q[idx, idx] = 1
##!diag(Q) = 1
##!g = inla.read.graph(Q)
##!QQ = inla.graph2matrix(g)
##!inla.spy(QQ)
##!print(all.equal(as.matrix(Q), as.matrix(QQ)))
##!
##!g.file = inla.write.graph(g)
##!inla.dev.new()
##!inla.spy(g.file)
##!inla.spy(g.file, reordering = inla.qreordering(g))
##!
##!g = inla.read.graph(g.file)
##!inla.dev.new()
##!inla.spy(g)
##!
##!inla.dev.new()
##!inla.spy(3, 1, "1 2 2 1 1 3 0")
##!inla.dev.new()
##!inla.spy(3, 1, "1 2 2 1 1 3 0", reordering = 3:1)
##!}
`inla.matrix2graph` = function(graph, ...)
{
## this function is not really needed, but is included for
## backwards compatibility
return (inla.read.graph(graph, ...))
}
`inla.graph2matrix` = function(graph, ...)
{
g = inla.read.graph(graph, ...)
i = rep(1:g$n, 1L+g$nnbs)
j = unlist(sapply(1:g$n, function(i,g) return (c(i, g$nbs[[i]])), g))
stopifnot(length(i) == length(j))
Q = inla.as.dgTMatrix(sparseMatrix(i = i, j = j, x = rep(1, length(i))))
return (Q)
}
`inla.spy` = function(graph, ..., reordering = NULL, factor = 1.0, max.dim = NULL)
{
## add this test here, as otherwise, this can be very inefficient
## for large matrices. this is because we convert it into a graph
## and then back to a matrix.
M = try(inla.as.dgTMatrix(graph, ...), silent=TRUE)
if (inherits(M, "try-error")) {
M = inla.graph2matrix(graph, ...)
}
## if max.dim is set, compute the corresponding factor
if (missing(factor) && !is.null(max.dim) && max.dim > 0) {
d.max = max(dim(M))
factor = min(1.0, max.dim / d.max)
}
M = inla.sparse.matrix.pattern(M, factor=factor, reordering = reordering)
## plot -M, to make the background white
inla.display.matrix(-M, nlevel = 2)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.