## Export: inla.pc.rcor0 inla.pc.dcor0 inla.pc.qcor0 inla.pc.pcor0
##! \name{pc.cor0}
##! \alias{inla.pc.cor0}
##! \alias{pc.cor0}
##! \alias{pc.rcor0}
##! \alias{inla.pc.rcor0}
##! \alias{pc.dcor0}
##! \alias{inla.pc.dcor0}
##! \alias{pc.pcor0}
##! \alias{inla.pc.pcor0}
##! \alias{pc.qcor0}
##! \alias{inla.pc.qcor0}
##!
##! \title{Utility functions for the PC prior for correlation in AR(1)}
##!
##! \description{Functions to evaluate, sample, compute quantiles and
##! percentiles of the PC prior for the correlation
##! in the Gaussian AR(1) model where the base-model
##! is zero correlation.}
##! \usage{
##! inla.pc.rcor0(n, u, alpha, lambda)
##! inla.pc.dcor0(cor, u, alpha, lambda, log = FALSE)
##! inla.pc.qcor0(p, u, alpha, lambda)
##! inla.pc.pcor0(q, u, alpha, lambda)
##! }
##! \arguments{
##! \item{n}{Number of observations}
##! \item{u}{The upper limit (see Details)}
##! \item{alpha}{The probability going above the upper limit (see Details)}
##! \item{lambda}{The rate parameter (see Details)}
##! \item{cor}{Vector of correlations}
##! \item{log}{Logical. Return the density in natural or log-scale.}
##! \item{p}{Vector of probabilities}
##! \item{q}{Vector of quantiles}
##! }
##! \details{
##! The statement \code{Prob(|cor| > u) = alpha} is used to
##! determine \code{lambda} unless \code{lambda} is given.
##! Either \code{lambda} must be given, or
##! \code{u} AND \code{alpha}. The density is symmetric around zero.
##! }
##!\value{%%
##! \code{inla.pc.dcor0} gives the density,
##! \code{inla.pc.pcor0} gives the distribution function,
##! \code{inla.pc.qcor0} gives the quantile function, and
##! \code{inla.pc.rcor0} generates random deviates.
##! }
##! \seealso{inla.doc("pc.rho0")}
##! \author{Havard Rue \email{hrue@math.ntnu.no}}
##! \examples{
##! cor = inla.pc.rcor0(100, lambda = 1)
##! d = inla.pc.dcor0(cor, lambda = 1)
##! cor = inla.pc.qcor0(c(0.3, 0.7), u = 0.5, alpha=0.01)
##! inla.pc.pcor0(cor, u = 0.5, alpha=0.01)
##! }
inla.pc.cor0.lambda = function(u, alpha, lambda)
{
if (missing(lambda)) {
stopifnot(!missing(u) && !missing(alpha))
lambda = -log(alpha)/sqrt(-log(1-u^2))
}
return (lambda)
}
inla.pc.rcor0 = function(n, u, alpha, lambda)
{
lambda = inla.pc.cor0.lambda(u, alpha, lambda)
d = rexp(n, rate = lambda)
sign = sample(c(-1, 1), size = n, replace = TRUE)
cor = sqrt(1-exp(-d^2)) * sign
return (cor)
}
inla.pc.dcor0 = function(cor, u, alpha, lambda, log = FALSE)
{
lambda = inla.pc.cor0.lambda(u, alpha, lambda)
mu = sqrt(-log(1-cor^2))
jac = abs(cor)/mu/(1-cor^2)
if (log) {
return (dexp(mu, rate = lambda, log=TRUE) + log(jac/2.0))
} else {
return (dexp(mu, rate = lambda) * jac/2.0)
}
}
inla.pc.qcor0 = function(p, u, alpha, lambda)
{
lambda = inla.pc.cor0.lambda(u, alpha, lambda)
sign = (p >= 0.5)
pp = sign * p + (1-sign)*(1-p)
pp = 2*pp - 1
qq = qexp(pp, rate = lambda)
q = sqrt(1-exp(-qq^2))
q = sign*q + (1-sign)*(-q)
return (q)
}
inla.pc.pcor0 = function(q, u, alpha, lambda)
{
lambda = inla.pc.cor0.lambda(u, alpha, lambda)
sign = (q >= 0)
qq = sign*q + (1-sign)*(-q)
pp = sqrt(-log(1-qq^2))
pp = pexp(pp, rate = lambda)
p = sign*(1/2 + 1/2*pp) + (1-sign)*(1/2-1/2*pp)
return (p)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.