Description Usage Arguments Examples
Returns the conditional distribution and its derivative of the flux field given the flux field parameters and the mole-fraction observations
1 2 | Yf_BC_conditionals(Z, Zinv, C_m, Qobs, B, X, Q_zeta, S_f_trans, lambda = 0,
lambda_fix = NA, Pericchi = TRUE, ind = 1:nrow(S_f_trans))
|
Z |
matrix of mole fraction observations (of size m x 1) |
C_m |
observation incidence matrix (of size m x n_m) |
Qobs |
observation precision matrix (of size m x m) |
B |
source-receptor relationship matrix (of size n_m x n_f) |
X |
covariates matrix (of size n_f x p) |
Q_zeta |
precision matrix of discrepancy field (of size n_m x n_m). Should be sparse |
S_f_trans |
covariance matrix of flux field in transformed (Gaussian) space (of size n_f x n_f) |
lambda |
Box-Cox transformation parameter |
ind |
vector of indices on which to consider the flux (some unidentifiable grid cells may be omitted) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | n_f <- 20
n_m <- m_obs <- 100
cond_fns <- Yf_BC_conditionals(Z = 200 + matrix(rnorm(n_m,sd=100),n_m,1),
C_m = .symDiagonal(n_m),
Qobs = Diagonal(n_m),
B = matrix(rnorm(n_m*n_f),n_m,n_f),
X = matrix(rep(1,n_f)),
Q_zeta = n_m*Diagonal(n_m),
S_f_trans = Diagonal(n_f),
lambda = 0.1
)
Yf <- matrix(rpois(n_f,20),n_f,1)
cond_fns$logf(Yf)
cond_fns$gr_logf(Yf)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.