#' Display the summary of dynforest
#'
#' @param object \code{dynforest} or \code{dynforestOOB} object
#' @param ... Optional parameters to be passed to the low level function
#'
#' @return Return some information about the random forest
#'
#' @seealso [dynforest()]
#'
#' @examples
#' \donttest{
#' data(pbc2)
#'
#' # Get Gaussian distribution for longitudinal predictors
#' pbc2$serBilir <- log(pbc2$serBilir)
#' pbc2$SGOT <- log(pbc2$SGOT)
#' pbc2$albumin <- log(pbc2$albumin)
#' pbc2$alkaline <- log(pbc2$alkaline)
#'
#' # Sample 100 subjects
#' set.seed(1234)
#' id <- unique(pbc2$id)
#' id_sample <- sample(id, 100)
#' id_row <- which(pbc2$id%in%id_sample)
#'
#' pbc2_train <- pbc2[id_row,]
#'
# Build longitudinal data
#' timeData_train <- pbc2_train[,c("id","time",
#' "serBilir","SGOT",
#' "albumin","alkaline")]
#'
#' # Create object with longitudinal association for each predictor
#' timeVarModel <- list(serBilir = list(fixed = serBilir ~ time,
#' random = ~ time),
#' SGOT = list(fixed = SGOT ~ time + I(time^2),
#' random = ~ time + I(time^2)),
#' albumin = list(fixed = albumin ~ time,
#' random = ~ time),
#' alkaline = list(fixed = alkaline ~ time,
#' random = ~ time))
#'
#' # Build fixed data
#' fixedData_train <- unique(pbc2_train[,c("id","age","drug","sex")])
#'
#' # Build outcome data
#' Y <- list(type = "surv",
#' Y = unique(pbc2_train[,c("id","years","event")]))
#'
#' # Run dynforest function
#' res_dyn <- dynforest(timeData = timeData_train, fixedData = fixedData_train,
#' timeVar = "time", idVar = "id",
#' timeVarModel = timeVarModel, Y = Y,
#' ntree = 50, nodesize = 5, minsplit = 5,
#' cause = 2, ncores = 2, seed = 1234)
#'
#' # Compute OOB error
#' res_dyn_OOB <- compute_ooberror(dynforest_obj = res_dyn, ncores = 2)
#'
#' # dynforest summary
#' summary(object = res_dyn_OOB)
#' }
#' @rdname summary.dynforest
#' @export
summary.dynforest <- function(object, ...){
if (object$type=="surv"){
if (length(object$causes)>1){
type <- "survival (competing risk)"
split.rule <- "Fine & Gray statistic test"
}else{
type <- "survival"
split.rule <- "Maximize log-rank statistic test"
}
oob.type <- "Integrated Brier Score"
leaf.stat <- "Cumulative incidence function"
}
if (object$type=="factor"){
type <- "categorical"
oob.type <- "Missclassification"
split.rule <- "Minimize weighted within-group Shannon entropy"
leaf.stat <- "Majority vote"
}
if (object$type=="numeric"){
type <- "continuous"
oob.type <- "Mean square error"
split.rule <- "Minimize weighted within-group variance"
leaf.stat <- "Mean"
}
##############################
cat(paste0("dynforest executed for ", type, " outcome"),"\n")
cat(paste0("\t","Splitting rule: ", split.rule),"\n")
cat(paste0("\t","Out-of-bag error type: ", oob.type),"\n")
cat(paste0("\t","Leaf statistic: ", leaf.stat),"\n")
cat("----------------","\n")
# input
cat("Input","\n")
cat(paste0("\t","Number of subjects: ", length(unique(unlist(apply(object$rf, 2, FUN = function(x) x$idY))))),"\n")
cat(paste0("\t","Longitudinal: ", length(object$Inputs$Longitudinal), " predictor(s)"),"\n")
cat(paste0("\t","Numeric: ", length(object$Inputs$Numeric), " predictor(s)"),"\n")
cat(paste0("\t","Factor: ", length(object$Inputs$Factor), " predictor(s)"),"\n")
cat("----------------","\n")
# tuning parameters
cat("Tuning parameters","\n")
cat(paste0("\t","mtry: ", object$param$mtry),"\n")
cat(paste0("\t","nodesize: ", object$param$nodesize),"\n")
if (type%in%c("survival (competing risk)","survival")){
cat(paste0("\t","minsplit: ", object$param$minsplit),"\n")
}
cat(paste0("\t","ntree: ", object$param$ntree),"\n")
cat("----------------","\n")
cat("----------------","\n")
# dynforest summary
cat("dynforest summary","\n")
cat(paste0("\t","Average depth per tree: ",
round(mean(apply(object$rf, 2, FUN = function(x){
mean(x$V_split$depth[which(x$V_split$type=="Leaf")])}),
na.rm = T),2)),"\n")
cat(paste0("\t","Average number of leaves per tree: ",
round(mean(apply(object$rf, 2, FUN = function(x){
length(x$V_split$type[which(x$V_split$type=="Leaf")])}),
na.rm = T),2)),"\n")
cat(paste0("\t","Average number of subjects per leaf: ",
round(mean(apply(object$rf, 2, FUN = function(x){
mean(x$V_split$N[which(x$V_split$type=="Leaf")])}),
na.rm = T),2)),"\n")
if (type%in%c("survival (competing risk)","survival")){
cat(paste0("\t","Average number of events of interest per leaf: ",
round(mean(apply(object$rf, 2, FUN = function(x){
mean(x$V_split$Nevent[which(x$V_split$type=="Leaf")])}),
na.rm = T),2)),"\n")
}
cat("----------------","\n")
# computation time
cat("Computation time \n")
cat(paste0("\t","Number of cores used: ", object$ncores),"\n")
cat("\t")
print(object$comput.time)
cat("----------------","\n")
}
#' @rdname summary.dynforest
#' @export
summary.dynforestoob <- function(object, ...){
if (object$type=="surv"){
if (length(object$causes)>1){
type <- "survival (competing risk)"
split.rule <- "Fine & Gray statistic test"
}else{
type <- "survival"
split.rule <- "Maximize log-rank statistic test"
}
oob.type <- "Integrated Brier Score"
leaf.stat <- "Cumulative incidence function"
}
if (object$type=="factor"){
type <- "categorical"
oob.type <- "Missclassification"
split.rule <- "Minimize weighted within-group Shannon entropy"
leaf.stat <- "Majority vote"
}
if (object$type=="numeric"){
type <- "continuous"
oob.type <- "Mean square error"
split.rule <- "Minimize weighted within-group variance"
leaf.stat <- "Mean"
}
##############################
cat(paste0("dynforest executed for ", type, " outcome"),"\n")
cat(paste0("\t","Splitting rule: ", split.rule),"\n")
cat(paste0("\t","Out-of-bag error type: ", oob.type),"\n")
cat(paste0("\t","Leaf statistic: ", leaf.stat),"\n")
cat("----------------","\n")
# input
cat("Input","\n")
cat(paste0("\t","Number of subjects: ", length(unique(unlist(apply(object$rf, 2, FUN = function(x) x$idY))))),"\n")
cat(paste0("\t","Longitudinal: ", length(object$Inputs$Longitudinal), " predictor(s)"),"\n")
cat(paste0("\t","Numeric: ", length(object$Inputs$Numeric), " predictor(s)"),"\n")
cat(paste0("\t","Factor: ", length(object$Inputs$Factor), " predictor(s)"),"\n")
cat("----------------","\n")
# tuning parameters
cat("Tuning parameters","\n")
cat(paste0("\t","mtry: ", object$param$mtry),"\n")
cat(paste0("\t","nodesize: ", object$param$nodesize),"\n")
if (type%in%c("survival (competing risk)","survival")){
cat(paste0("\t","minsplit: ", object$param$minsplit),"\n")
}
cat(paste0("\t","ntree: ", object$param$ntree),"\n")
cat("----------------","\n")
cat("----------------","\n")
# dynforest summary
cat("dynforest summary","\n")
cat(paste0("\t","Average depth per tree: ",
round(mean(apply(object$rf, 2, FUN = function(x){
mean(x$V_split$depth[which(x$V_split$type=="Leaf")])}),
na.rm = T),2)),"\n")
cat(paste0("\t","Average number of leaves per tree: ",
round(mean(apply(object$rf, 2, FUN = function(x){
length(x$V_split$type[which(x$V_split$type=="Leaf")])}),
na.rm = T),2)),"\n")
cat(paste0("\t","Average number of subjects per leaf: ",
round(mean(apply(object$rf, 2, FUN = function(x){
mean(x$V_split$N[which(x$V_split$type=="Leaf")])}),
na.rm = T),2)),"\n")
if (type%in%c("survival (competing risk)","survival")){
cat(paste0("\t","Average number of events of interest per leaf: ",
round(mean(apply(object$rf, 2, FUN = function(x){
mean(x$V_split$Nevent[which(x$V_split$type=="Leaf")])}),
na.rm = T),2)),"\n")
}
cat("----------------","\n")
# out-of-bag error
cat(paste0("Out-of-bag error based on ", oob.type),"\n")
cat(paste0("\t","Out-of-bag error: ", round(mean(object$oob.err, na.rm = T), 4)), "\n")
cat("----------------","\n")
# computation time
cat("Computation time \n")
cat(paste0("\t","Number of cores used: ", object$ncores),"\n")
cat("\t")
print(object$comput.time)
cat("----------------","\n")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.