#' @title Filter observations by local 2D density
#'
#' @description \code{stat_dens2d_filter} Filters-out/filters-in observations in
#' regions of a plot panel with high density of observations, based on the
#' values mapped to both \code{x} and \code{y} aesthetics.
#' \code{stat_dens2d_filter_g} does the filtering by group instead of by
#' panel. This second stat is useful for highlighting observations, while the
#' first one tends to be most useful when the aim is to prevent clashes among
#' text labels. If there is no mapping to \code{label} in \code{data}, the
#' mapping is silently set to \code{rownames(data)}.
#'
#' @details The local density of observations in 2D (\emph{x} and \emph{y}) is
#' computed with function \code{\link[MASS]{kde2d}} and used to select
#' observations, passing to the geom a subset of the rows in its \code{data}
#' input. The default is to select observations in sparse regions of the plot,
#' but the selection can be inverted so that only observations in the densest
#' regions are returned. Specific observations can be protected from being
#' deselected and "kept" by passing a suitable argument to \code{keep.these}.
#' Logical and integer vectors work as indexes to rows in \code{data}, while a
#' character vector values are compared to the character values mapped to the
#' \code{label} aesthetic. A function passed as argument to keep.these will
#' receive as argument the values in the variable mapped to \code{label} and
#' should return a character, logical or numeric vector as described above. If
#' no variable has been mapped to \code{label}, row names are used in its
#' place.
#'
#' How many rows are retained in addition to those in \code{keep.these} is
#' controlled with arguments passed to \code{keep.number} and
#' \code{keep.fraction}. \code{keep.number} sets the maximum number of
#' observations selected, whenever \code{keep.fraction} results in fewer
#' observations selected, it is obeyed.
#'
#' Computation of density and of the default bandwidth require at least
#' two observations with different values. If data do not fulfill this
#' condition, they are kept only if \code{keep.fraction = 1}. This is correct
#' behavior for a single observation, but can be surprising in the case of
#' multiple observations.
#'
#' Parameters \code{keep.these} and \code{exclude.these} make it possible to
#' force inclusion or exclusion of observations after the density is computed.
#' In case of conflict, \code{exclude.these} overrides \code{keep.these}.
#'
#' @note Which points are kept and which not depends on how dense a grid is used
#' and how flexible the density surface estimate is. This depends on the
#' values passed as arguments to parameters \code{n}, \code{bw} and
#' \code{kernel}. It is also important to be aware that both
#' \code{geom_text()} and \code{geom_text_repel()} can avoid overplotting by
#' discarding labels at the plot rendering stage, i.e., what is plotted may
#' differ from what is returned by this statistic.
#'
#' @param mapping The aesthetic mapping, usually constructed with
#' \code{\link[ggplot2]{aes}} or \code{\link[ggplot2]{aes_}}. Only needs
#' to be set at the layer level if you are overriding the plot defaults.
#' @param data A layer specific dataset - only needed if you want to override
#' the plot defaults.
#' @param geom The geometric object to use display the data.
#' @param keep.fraction numeric [0..1]. The fraction of the observations (or
#' rows) in \code{data} to be retained.
#' @param keep.number integer Set the maximum number of observations to retain,
#' effective only if obeying \code{keep.fraction} would result in a larger
#' number.
#' @param keep.sparse logical If \code{TRUE}, the default, observations from the
#' more sparse regions are retained, if \code{FALSE} those from the densest
#' regions.
#' @param keep.these,exclude.these character vector, integer vector, logical
#' vector or function that takes one or more variables in data selected by
#' \code{these.target}. Negative integers behave as in R's extraction methods.
#' The rows from \code{data} indicated by \code{keep.these} and
#' \code{exclude.these} are kept or excluded irrespective of the local
#' density.
#' @param these.target character, numeric or logical selecting one or more
#' column(s) of \code{data}. If \code{TRUE} the whole \code{data} object is
#' passed.
#' @param pool.along character, one of \code{"none"}, \code{"x"}, \code{"y"}, or
#' \code{"xy"} indicating if selection should be done pooling the observations
#' along the \emph{x}, \code{y}, both axes or none based on quadrants given by
#' \code{xintercept} and \code{yintercept}.
#' @param xintercept,yintercept numeric The center point of the quadrants.
#' @param invert.selection logical If \code{TRUE}, the complement of the
#' selected rows are returned.
#' @param h vector of bandwidths for x and y directions. Defaults to normal
#' reference bandwidth (see bandwidth.nrd). A scalar value will be taken to
#' apply to both directions.
#' @param n Number of grid points in each direction. Can be scalar or a
#' length-2 integer vector
#' @param return.density logical vector of lenght 1. If \code{TRUE} add columns
#' \code{"density"} and \code{"keep.obs"} to the returned data frame.
#' @param position The position adjustment to use for overlapping points on this
#' layer
#' @param show.legend logical. Should this layer be included in the legends?
#' \code{NA}, the default, includes if any aesthetics are mapped. \code{FALSE}
#' never includes, and \code{TRUE} always includes.
#' @param inherit.aes If \code{FALSE}, overrides the default aesthetics, rather
#' than combining with them. This is most useful for helper functions that
#' define both data and aesthetics and shouldn't inherit behaviour from the
#' default plot specification, e.g. \code{\link[ggplot2]{borders}}.
#' @param ... other arguments passed on to \code{\link[ggplot2]{layer}}. This
#' can include aesthetics whose values you want to set, not map. See
#' \code{\link[ggplot2]{layer}} for more details.
#' @param na.rm a logical value indicating whether NA values should be stripped
#' before the computation proceeds.
#'
#' @return A plot layer instance. Using as output \code{data} a subset of the
#' rows in input \code{data} retained based on a 2D-density-based filtering
#' criterion.
#'
#' @seealso \code{\link{stat_dens2d_labels}} and \code{\link[MASS]{kde2d}} used
#' internally. Parameters \code{n}, \code{h} in these statistics correspond to
#' the parameters with the same name in this imported function. Limits are set
#' to the limits of the plot scales.
#'
#' @family statistics returning a subset of data
#'
#' @examples
#'
#' random_string <-
#' function(len = 6) {
#' paste(sample(letters, len, replace = TRUE), collapse = "")
#' }
#'
#' # Make random data.
#' set.seed(1001)
#' d <- tibble::tibble(
#' x = rnorm(100),
#' y = rnorm(100),
#' group = rep(c("A", "B"), c(50, 50)),
#' lab = replicate(100, { random_string() })
#' )
#'
#' # filter (and here highlight) 1/10 observations in sparsest regions
#' ggplot(data = d, aes(x, y)) +
#' geom_point() +
#' stat_dens2d_filter(colour = "red")
#'
#' # filter observations not in the sparsest regions
#' ggplot(data = d, aes(x, y)) +
#' geom_point() +
#' stat_dens2d_filter(colour = "blue", invert.selection = TRUE)
#'
#' # filter observations in dense regions of the plot
#' ggplot(data = d, aes(x, y)) +
#' geom_point() +
#' stat_dens2d_filter(colour = "blue", keep.sparse = FALSE)
#'
#' # filter 1/2 the observations
#' ggplot(data = d, aes(x, y)) +
#' geom_point() +
#' stat_dens2d_filter(colour = "red", keep.fraction = 0.5)
#'
#' # filter 1/2 the observations but cap their number to maximum 12 observations
#' ggplot(data = d, aes(x, y)) +
#' geom_point() +
#' stat_dens2d_filter(colour = "red",
#' keep.fraction = 0.5,
#' keep.number = 12)
#'
#' # density filtering done jointly across groups
#' ggplot(data = d, aes(x, y, colour = group)) +
#' geom_point() +
#' stat_dens2d_filter(shape = 1, size = 3, keep.fraction = 1/4)
#'
#' # density filtering done independently for each group
#' ggplot(data = d, aes(x, y, colour = group)) +
#' geom_point() +
#' stat_dens2d_filter_g(shape = 1, size = 3, keep.fraction = 1/4)
#'
#' # density filtering done jointly across groups by overriding grouping
#' ggplot(data = d, aes(x, y, colour = group)) +
#' geom_point() +
#' stat_dens2d_filter_g(colour = "black",
#' shape = 1, size = 3, keep.fraction = 1/4)
#'
#' # label observations
#' ggplot(data = d, aes(x, y, label = lab, colour = group)) +
#' geom_point() +
#' stat_dens2d_filter(geom = "text")
#'
#' ggplot(data = d, aes(x, y, label = lab, colour = group)) +
#' geom_point() +
#' stat_dens2d_filter(geom = "text",
#' keep.these = function(x) {grepl("^u", x)})
#'
#' ggplot(data = d, aes(x, y, label = lab, colour = group)) +
#' geom_point() +
#' stat_dens2d_filter(geom = "text",
#' keep.these = function(x) {grepl("^u", x)})
#'
#' ggplot(data = d, aes(x, y, label = lab, colour = group)) +
#' geom_point() +
#' stat_dens2d_filter(geom = "text",
#' keep.these = 1:30)
#'
#' # looking under the hood with gginnards::geom_debug()
#' gginnards.installed <- requireNamespace("gginnards", quietly = TRUE)
#' if (gginnards.installed) {
#' library(gginnards)
#'
#' ggplot(data = d, aes(x, y, label = lab, colour = group)) +
#' stat_dens2d_filter(geom = "debug")
#'
#' ggplot(data = d, aes(x, y, label = lab, colour = group)) +
#' geom_point() +
#' stat_dens2d_filter(geom = "debug", return.density = TRUE)
#' }
#'
#' @export
#'
stat_dens2d_filter <-
function(mapping = NULL, data = NULL,
geom = "point", position = "identity",
...,
keep.fraction = 0.10,
keep.number = Inf,
keep.sparse = TRUE,
keep.these = FALSE,
exclude.these = FALSE,
these.target = "label",
pool.along = c("xy", "x", "y", "none"),
xintercept = 0,
yintercept = 0,
invert.selection = FALSE,
na.rm = TRUE, show.legend = FALSE,
inherit.aes = TRUE,
h = NULL,
n = NULL,
return.density = FALSE) {
pool.along <- rlang::arg_match(pool.along)
if (any(is.na(keep.fraction) | keep.fraction < 0 | keep.fraction > 1)) {
stop("Out of range or missing value for 'keep.fraction': ", keep.fraction)
}
if (any(is.na(keep.number) | keep.number < 0)) {
stop("Out of range or missing value for 'keep.number': ", keep.number)
}
max.expected.length <- unname(c(none = 4L, x = 2L, y = 2L, xy = 1L)[pool.along])
if (length(keep.fraction) > max.expected.length) {
if (max.expected.length == 4L) {
stop("Length of 'keep.fraction' should not exceed 4")
} else {
warning("'keep.fraction' is too long, did you forget to set 'pool.along'?")
}
}
if (length(keep.number) > max.expected.length) {
if (max.expected.length == 4L) {
stop("Length of 'keep.number' should not exceed 4")
} else {
warning("'keep.number' is too long, did you forget to set 'pool.along'?")
}
}
ggplot2::layer(
stat = StatDens2dFilter, data = data, mapping = mapping, geom = geom,
position = position, show.legend = show.legend, inherit.aes = inherit.aes,
params = list(na.rm = na.rm,
keep.fraction = keep.fraction,
keep.number = keep.number,
keep.sparse = keep.sparse,
keep.these = keep.these,
exclude.these = exclude.these,
these.target = these.target,
pool.along = pool.along,
xintercept = xintercept,
yintercept = yintercept,
invert.selection = invert.selection,
h = h,
n = n,
return.density = return.density,
...)
)
}
#' @rdname stat_dens2d_filter
#'
#' @export
#'
stat_dens2d_filter_g <-
function(mapping = NULL, data = NULL,
geom = "point",
position = "identity",
...,
keep.fraction = 0.10,
keep.number = Inf,
keep.sparse = TRUE,
keep.these = FALSE,
exclude.these = FALSE,
these.target = "label",
pool.along = c("xy", "x", "y", "none"),
xintercept = 0,
yintercept = 0,
invert.selection = FALSE,
na.rm = TRUE, show.legend = FALSE,
inherit.aes = TRUE,
h = NULL,
n = NULL,
return.density = FALSE) {
pool.along <- rlang::arg_match(pool.along)
if (any(is.na(keep.fraction) | keep.fraction < 0 | keep.fraction > 1)) {
stop("Out of range or missing value for 'keep.fraction': ", keep.fraction)
}
if (any(is.na(keep.number) | keep.number < 0)) {
stop("Out of range or missing value for 'keep.number': ", keep.number)
}
max.expected.length <- unname(c(none = 4L, x = 2L, y = 2L, xy = 1L)[pool.along])
if (length(keep.fraction) > max.expected.length) {
if (max.expected.length == 4L) {
stop("Length of 'keep.fraction' should not exceed 4")
} else {
warning("'keep.fraction' is too long, did you forget to set 'pool.along'?")
}
}
if (length(keep.number) > max.expected.length) {
if (max.expected.length == 4L) {
stop("Length of 'keep.number' should not exceed 4")
} else {
warning("'keep.number' is too long, did you forget to set 'pool.along'?")
}
}
ggplot2::layer(
stat = StatDens2dFilterG, data = data, mapping = mapping, geom = geom,
position = position, show.legend = show.legend, inherit.aes = inherit.aes,
params = list(na.rm = na.rm,
keep.fraction = keep.fraction,
keep.number = keep.number,
keep.sparse = keep.sparse,
keep.these = keep.these,
exclude.these = exclude.these,
these.target = these.target,
pool.along = pool.along,
xintercept = xintercept,
yintercept = yintercept,
invert.selection = invert.selection,
h = h,
n = n,
return.density = return.density,
...)
)
}
#' @rdname ggpp-ggproto
#' @format NULL
#' @usage NULL
#' @export
StatDens2dFilter <-
ggplot2::ggproto(
"StatDens2dFilter",
ggplot2::Stat,
compute_panel =
# dens2d_flt_compute_fun,
# see below for duplicated code to ensure 'covr' sees it
function(data,
scales,
keep.fraction,
keep.number,
keep.sparse,
keep.these,
exclude.these,
these.target,
pool.along,
xintercept,
yintercept,
invert.selection,
h,
n,
return.density) {
force(data)
keep.these <- these2logical(these = keep.these,
data = data,
these.target = these.target)
exclude.these <- these2logical(these = exclude.these,
data = data,
these.target = these.target)
# discard redundant splits
if (pool.along != "xy") {
if (pool.along == "y" &&
!(xintercept < max(data[["x"]]) &&
xintercept > min(data[["x"]]))) {
pool.along <- "xy"
} else if (pool.along == "x" &&
!(yintercept < max(data[["y"]]) &&
yintercept > min(data[["y"]]))) {
pool.along <- "xy"
} else if (pool.along == "none") {
if (!(xintercept < max(data[["x"]]) &&
xintercept > min(data[["x"]])) &&
!(yintercept < max(data[["y"]]) &&
yintercept > min(data[["y"]]))) {
pool.along <- "xy"
} else if (!(xintercept < max(data[["x"]]) &&
xintercept > min(data[["x"]]))) {
pool.along <- "x"
} else if (!(yintercept < max(data[["y"]]) &&
yintercept > min(data[["y"]]))) {
pool.along <- "y"
}
}
}
# make list of logical vectors
if (pool.along == "y") {
selectors <-list(q12 = data[["x"]] <= xintercept,
q34 = data[["x"]] > xintercept)
if (length(keep.fraction) != 2L) {
keep.fraction <- rep_len(keep.fraction, length.out = 2)
}
if (length(keep.number) != 2L) {
if (length(keep.number) == 1L) {
keep.number <- keep.number %/% 2
}
keep.number <- rep_len(keep.number, length.out = 2)
}
num.rows <- sapply(selectors, sum) # selectors are logical
} else if (pool.along == "x") {
selectors <-list(q23 = data[["y"]] <= yintercept,
q41 = data[["y"]] > yintercept)
if (length(keep.fraction) != 2L) {
keep.fraction <- rep_len(keep.fraction, length.out = 2)
}
if (length(keep.number) != 2L) {
if (length(keep.number) == 1L) {
keep.number <- keep.number %/% 2
}
keep.number <- rep_len(keep.number, length.out = 2)
}
num.rows <- sapply(selectors, sum) # selectors are logical
} else if (pool.along == "none") {
selectors <-list(q1 = data[["y"]] >= yintercept & data[["x"]] >= xintercept,
q2 = data[["y"]] < yintercept & data[["x"]] >= xintercept,
q3 = data[["y"]] < yintercept & data[["x"]] < xintercept,
q4 = data[["y"]] > yintercept & data[["x"]] < xintercept)
if (length(keep.fraction) != 4L) {
keep.fraction <- rep_len(keep.fraction, length.out = 4)
}
if (length(keep.number) != 4L) {
if (length(keep.number) == 1L) {
keep.number <- keep.number %/% 4
}
keep.number <- rep_len(keep.number, length.out = 4)
}
num.rows <- sapply(selectors, sum) # selectors are logical
} else {
keep.fraction <- keep.fraction[[1]] # can be a vector or a list
keep.number <- keep.number[[1]]
num.rows <- nrow(data)
selectors <- list(all = rep.int(TRUE, times = num.rows))
}
# vectorized
too.large.frac <- num.rows * keep.fraction > keep.number
keep.fraction[too.large.frac] <-
keep.number[too.large.frac] / num.rows[too.large.frac]
# estimate 2D density
# data with fewer than 2 rows needs to be treated as a special case as
# density cannot be estimated
if (length(unique(data$x)) >= 2L &&
length(unique(data$y)) >= 2L) {
if (is.null(h)) {
h <- c(MASS::bandwidth.nrd(data$x), MASS::bandwidth.nrd(data$y))
}
if (is.null(n)) {
n <- trunc(sqrt(nrow(data))) * 8L
}
kk <- MASS::kde2d(
data[["x"]], data[["y"]], h = h, n = n,
lims = c(scales$x$dimension(), scales$y$dimension()))
dimnames(kk[["z"]]) <- list(kk[["x"]], kk[["y"]])
# compute 2D density at each observation's coordinates
kx <- cut(data$x, kk$x, labels = FALSE, include.lowest = TRUE)
ky <- cut(data$y, kk$y, labels = FALSE, include.lowest = TRUE)
kz <- sapply(seq_along(kx), function(i) kk$z[kx[i], ky[i]])
} else {
if (nrow(data) > 1L) {
message("Density not computed, too few distinct values in 'x' and/or 'y'")
}
kz <- rep_len(1, nrow(data))
}
# we construct one logical vector by adding observations/label to be kept
# we may have a list of 1, 2, or 4 logical vectors
keep <- logical(nrow(data))
for (i in seq_along(selectors)) {
if (keep.fraction[i] == 1) {
keep[ selectors[[i]] ] <- TRUE
} else if (keep.fraction[i] != 0 && length(selectors[[i]]) >= 2L) {
if (keep.sparse) {
keep[ selectors[[i]] ] <-
kz[ selectors[[i]] ] < stats::quantile(kz[ selectors[[i]] ],
keep.fraction[i], names = FALSE)
} else {
keep[ selectors[[i]] ] <-
kz[ selectors[[i]] ] >= stats::quantile(kz[ selectors[[i]] ],
1 - keep.fraction[i], names = FALSE)
}
}
}
keep <- (keep | keep.these) & !exclude.these
if (invert.selection) {
keep <- !keep
}
if (return.density) {
data[["keep.obs"]] <- keep
data[["density"]] <- kz
}
data[keep, ]
},
required_aes = c("x", "y")
)
#' @rdname ggpp-ggproto
#' @format NULL
#' @usage NULL
#' @export
StatDens2dFilterG <-
ggplot2::ggproto(
"StatDens2dFilterG",
ggplot2::Stat,
compute_group =
# dens2d_flt_compute_fun,
# see above for duplicated code to ensure 'covr' sees it
function(data,
scales,
keep.fraction,
keep.number,
keep.sparse,
keep.these,
exclude.these,
these.target,
pool.along,
xintercept,
yintercept,
invert.selection,
h,
n,
return.density) {
force(data)
keep.these <- these2logical(these = keep.these,
data = data,
these.target = these.target)
exclude.these <- these2logical(these = exclude.these,
data = data,
these.target = these.target)
# discard redundant splits
if (pool.along != "xy") {
if (pool.along == "y" &&
!(xintercept < max(data[["x"]]) &&
xintercept > min(data[["x"]]))) {
pool.along <- "xy"
} else if (pool.along == "x" &&
!(yintercept < max(data[["y"]]) &&
yintercept > min(data[["y"]]))) {
pool.along <- "xy"
} else if (pool.along == "none") {
if (!(xintercept < max(data[["x"]]) &&
xintercept > min(data[["x"]])) &&
!(yintercept < max(data[["y"]]) &&
yintercept > min(data[["y"]]))) {
pool.along <- "xy"
} else if (!(xintercept < max(data[["x"]]) &&
xintercept > min(data[["x"]]))) {
pool.along <- "x"
} else if (!(yintercept < max(data[["y"]]) &&
yintercept > min(data[["y"]]))) {
pool.along <- "y"
}
}
}
# make list of logical vectors
if (pool.along == "y") {
selectors <-list(q12 = data[["x"]] <= xintercept,
q34 = data[["x"]] > xintercept)
if (length(keep.fraction) != 2L) {
keep.fraction <- rep_len(keep.fraction, length.out = 2)
}
if (length(keep.number) != 2L) {
if (length(keep.number) == 1L) {
keep.number <- keep.number %/% 2
}
keep.number <- rep_len(keep.number, length.out = 2)
}
num.rows <- sapply(selectors, sum) # selectors are logical
} else if (pool.along == "x") {
selectors <-list(q23 = data[["y"]] <= yintercept,
q41 = data[["y"]] > yintercept)
if (length(keep.fraction) != 2L) {
keep.fraction <- rep_len(keep.fraction, length.out = 2)
}
if (length(keep.number) != 2L) {
if (length(keep.number) == 1L) {
keep.number <- keep.number %/% 2
}
keep.number <- rep_len(keep.number, length.out = 2)
}
num.rows <- sapply(selectors, sum) # selectors are logical
} else if (pool.along == "none") {
selectors <-list(q1 = data[["y"]] >= yintercept & data[["x"]] >= xintercept,
q2 = data[["y"]] < yintercept & data[["x"]] >= xintercept,
q3 = data[["y"]] < yintercept & data[["x"]] < xintercept,
q4 = data[["y"]] > yintercept & data[["x"]] < xintercept)
if (length(keep.fraction) != 4L) {
keep.fraction <- rep_len(keep.fraction, length.out = 4)
}
if (length(keep.number) != 4L) {
if (length(keep.number) == 1L) {
keep.number <- keep.number %/% 4
}
keep.number <- rep_len(keep.number, length.out = 4)
}
num.rows <- sapply(selectors, sum) # selectors are logical
} else {
keep.fraction <- keep.fraction[[1]] # can be a vector or a list
keep.number <- keep.number[[1]]
num.rows <- nrow(data)
selectors <- list(all = rep.int(TRUE, times = num.rows))
}
# vectorized
too.large.frac <- num.rows * keep.fraction > keep.number
keep.fraction[too.large.frac] <-
keep.number[too.large.frac] / num.rows[too.large.frac]
# estimate 2D density
# data with fewer than 2 rows is as a special case as density() fails
if (length(unique(data$x)) >= 2L &&
length(unique(data$y)) >= 2L) {
if (is.null(h)) {
h <- c(MASS::bandwidth.nrd(data$x), MASS::bandwidth.nrd(data$y))
}
if (is.null(n)) {
n <- trunc(sqrt(nrow(data))) * 8L
}
kk <- MASS::kde2d(
data[["x"]], data[["y"]], h = h, n = n,
lims = c(scales$x$dimension(), scales$y$dimension()))
dimnames(kk[["z"]]) <- list(kk[["x"]], kk[["y"]])
# compute 2D density at each observation's coordinates
kx <- cut(data$x, kk$x, labels = FALSE, include.lowest = TRUE)
ky <- cut(data$y, kk$y, labels = FALSE, include.lowest = TRUE)
kz <- sapply(seq_along(kx), function(i) kk$z[kx[i], ky[i]])
} else {
if (nrow(data) > 1L) {
message("Density not computed, too few distinct values in 'x' and/or 'y'")
}
kz <- rep_len(1, nrow(data))
}
# we construct one logical vector by adding observations/label to be kept
# we may have a list of 1, 2, or 4 logical vectors
keep <- logical(nrow(data))
for (i in seq_along(selectors)) {
if (keep.fraction[i] == 1) {
keep[ selectors[[i]] ] <- TRUE
} else if (keep.fraction[i] != 0 && length(selectors[[i]]) >= 2L) {
if (keep.sparse) {
keep[ selectors[[i]] ] <-
kz[ selectors[[i]] ] < stats::quantile(kz[ selectors[[i]] ],
keep.fraction[i], names = FALSE)
} else {
keep[ selectors[[i]] ] <-
kz[ selectors[[i]] ] >= stats::quantile(kz[ selectors[[i]] ],
1 - keep.fraction[i], names = FALSE)
}
}
}
keep <- (keep | keep.these) & !exclude.these
if (invert.selection){
keep <- !keep
}
if (return.density) {
data[["keep.obs"]] <- keep
data[["density"]] <- kz
}
data[keep, ]
},
required_aes = c("x", "y")
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.