dfrr-package: dfrr: Dichotomized Functional Response Regression

Description Details Author(s) References See Also Examples

Description

Implementing Function-on-Scalar Regression model in which the response function is dichotomized and observed sparsely. This package provides smooth estimations of functional regression coefficients and principal components for the dfrr model.

Details

Implementing Function-on-Scalar Regression model in which the response function is dichotomized and observed sparsely. This package provides smooth estimations of functional regression coefficients and principal components for the dfrr model. The main function in the dfrr-package is dfrr().

Author(s)

Maintainer: Fatemeh Asgari ft.asgari@sci.ui.ac.ir

Authors:

References

Fatemeh Asgari, Alamatsaz Mohammad Hossein, Hayati Saeed (2021). Dichotomized Functional Response Regression Model. <http://arxive.org/adress_to_paper>

See Also

Useful links:

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
set.seed(2000)
N<-50;M<-24

X<-rnorm(N,mean=0)
time<-seq(0,1,length.out=M)
Y<-simulate_simple_dfrr(beta0=function(t){cos(pi*t+pi)},
                        beta1=function(t){2*t},
                        X=X,time=time)

dfrr_fit<-dfrr(Y~X,yind=time)


coefs<-coef(dfrr_fit)
  plot(coefs)

fitteds<-fitted(dfrr_fit)
  plot(fitteds)

resids<-residuals(dfrr_fit)
plot(resids)

fpcs<-fpca(dfrr_fit)
plot(fpcs,plot.contour=TRUE,plot.3dsurface = TRUE)

newdata<-data.frame(X=c(1,0))
  preds<-predict(dfrr_fit,newdata=newdata)
  plot(preds)


newdata<-data.frame(X=c(1,0))
newydata<-data.frame(.obs=rep(1,5),.index=c(0.0,0.1,0.2,0.3,0.7),.value=c(1,1,1,0,0))
preds<-predict(dfrr_fit,newdata=newdata,newydata = newydata)
plot(preds)

asgari-fatemeh/dfrr documentation built on Aug. 12, 2020, 3:06 a.m.