Description Details Author(s) References See Also Examples
Implementing Function-on-Scalar Regression model in which the response function is dichotomized and observed sparsely. This package provides smooth estimations of functional regression coefficients and principal components for the dfrr model.
Implementing Function-on-Scalar Regression model in which the response function is dichotomized and observed sparsely. This package provides smooth estimations of functional regression coefficients and principal components for the dfrr model. The main function in the dfrr-package is dfrr().
Maintainer: Fatemeh Asgari ft.asgari@sci.ui.ac.ir
Authors:
Saeed Hayati s.hayati@sci.ui.ac.ir [contributor]
Fatemeh Asgari, Alamatsaz Mohammad Hossein, Hayati Saeed (2021). Dichotomized Functional Response Regression Model. <http://arxive.org/adress_to_paper>
Useful links:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | set.seed(2000)
N<-50;M<-24
X<-rnorm(N,mean=0)
time<-seq(0,1,length.out=M)
Y<-simulate_simple_dfrr(beta0=function(t){cos(pi*t+pi)},
beta1=function(t){2*t},
X=X,time=time)
dfrr_fit<-dfrr(Y~X,yind=time)
coefs<-coef(dfrr_fit)
plot(coefs)
fitteds<-fitted(dfrr_fit)
plot(fitteds)
resids<-residuals(dfrr_fit)
plot(resids)
fpcs<-fpca(dfrr_fit)
plot(fpcs,plot.contour=TRUE,plot.3dsurface = TRUE)
newdata<-data.frame(X=c(1,0))
preds<-predict(dfrr_fit,newdata=newdata)
plot(preds)
newdata<-data.frame(X=c(1,0))
newydata<-data.frame(.obs=rep(1,5),.index=c(0.0,0.1,0.2,0.3,0.7),.value=c(1,1,1,0,0))
preds<-predict(dfrr_fit,newdata=newdata,newydata = newydata)
plot(preds)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.