Description Usage Arguments Examples
Initialization method of the fitSpectra class.
Initialization method of the predictClass class.
Initialization method of the simulateSpectra class.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | ## S4 method for signature 'fitSpectra'
initialize(.Object, m = list(0),
modelname = "full", spectra = "diag", time = "diag",
kerneltypeSpectra = "exponential", kerneltypeTime = "exponential",
h = 10, s = 0.01, lambdaS = 0.3, lambdaT = 0.3,
validation = FALSE, listLambdaS = seq(from = 0.1, to = 0.3, by =
0.1), listLambdaT = seq(from = 0.1, to = 0.3, by = 0.1),
model = "gaussian")
## S4 method for signature 'predictClass'
initialize(.Object, m = list(0),
fittedCov = list(0), lambdaS = 0.3, lambdaT = 0.3,
model = "gaussian", validation = FALSE, listLambdaS = seq(from =
0.1, to = 10, by = 0.1), listLambdaT = seq(from = 0.1, to = 10, by =
0.1))
## S4 method for signature 'simulateSpectra'
initialize(.Object, nbPixel = 10000,
nbCluster = 15, nbSpectrum = 10, nbSampling = 33,
sigma = rexp(nbSpectrum), times = c(0, 10, 20, 30, 40, 50, 60, 70,
80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220,
230, 240, 250, 260, 270, 280, 290, 300, 310, 321), width = 50,
simulationType = "gaussian", modelname = "parsimonious",
kernelSpectra = "gaussian", kernelTime = "gaussian")
|
.Object |
object of class fitSpectra |
m |
spectroscopic data |
modelname |
name of model to be used for calculating the covariance matrix. Available models are "full", "parsimonious". Default is "full". |
spectra |
type of spectra. Available models are "diag", "unknown" and "kernel". Default is "diag". |
time |
type of time. Available models are "diag", "unknown" and "kernel". Default is "diag". |
kerneltypeSpectra |
kernel to be used for covariance matrix of spectra Available kernels are "epanechnikov", "gaussian", "exponential", "uniform", "quadratic", "circular", "triangular", "rational quadratic", "inverse multiquadratic". Default is "exponential". |
kerneltypeTime |
kernel to be used for covariance matrix of time Available kernels are "epanechnikov", "gaussian", "exponential", "uniform", "quadratic", "circular", "triangular", "rational quadratic", "inverse multiquadratic". Default is "exponential". |
h |
used for kernel calculation |
s |
regularisation paramater for flip flop algorithm |
lambdaS |
regularisation for spectra for flip flop algorithm |
lambdaT |
regularisation for spectra for flip flop algorithm |
validation |
to optimize lambda or not |
listLambdaS |
list of lambdaS used in prediction in case validation is TRUE |
listLambdaT |
list of lambdaT used in prediction in case validation is TRUE |
model |
use in prediction in case of validation is TRUE |
fittedCov |
fitted covariance matrix for the data |
nbPixel |
number of pixels belonging to class k |
nbCluster |
number of cluster |
nbSpectrum |
number of spectra |
nbSampling |
number of sampling |
sigma |
a vector of size nbSpectrum giving the variance level of the spectrum |
times |
time intervals of the simulation |
width |
the width of the kernel to use for "gaussian" simulation. Default is 50. |
simulationType |
type of simulation. Available options are "gaussian" and "tstudent". Default is "gaussian". |
kernelSpectra |
type of kernel to be used to simulate spectra. Available options are "diag", ""epanechnikov", "gaussian", "exponential", "uniform", "quadratic" , "circular", "triangular", "rational quadratic", "inverse multiquadratic". Default is "gaussian". |
kernelTime |
type of kernel to be used for simulating time. Available options are "diag", ""epanechnikov", "gaussian", "exponential", "uniform", "quadratic", "circular", "triangular", "rational quadratic", "inverse multiquadratic". Default is "gaussian". |
.Object |
object of class predictClass |
m |
spectroscopic data |
lambdaS |
parameter for regularisation of spectra |
lambdaT |
parameter for regularisation of time |
model |
type of model to be used for prediction of labels Available models are "gaussian", "tstudent". Default is "gaussian". |
validation |
logical to optimize the lambda. |
predicted_labels |
predicted class labels |
accuracy |
accracy of prediction |
.Object |
object of class simulateSpectra |
modelname |
type of model to be used to build covariance matrix. Available options are "full" and "parsimonious". Default is "full". |
nbSampling |
number of time intervals of the simulation |
gamma |
degrees of freedom used for simulating "tstudent" distribution of data. Default is 3. |
labels |
class labels of the data |
result |
return a list of simulated data |
1 2 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.