Description Usage Arguments Value
Identify clusters of cells by a shared nearest neighbor (SNN) modularity optimization based clustering algorithm. First calculate k-nearest neighbors and construct the SNN graph. Then optimize the modularity function to determine clusters. For a full description of the algorithms, see Waltman and van Eck (2013) The European Physical Journal B. Thanks to Nigel Delaney (evolvedmicrobe@github) for the rewrite of the Java modularity optimizer code in Rcpp!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | FindClusters(object, ...)
## Default S3 method:
FindClusters(object, modularity.fxn = 1,
resolution = 0.8, algorithm = 1, n.start = 10, n.iter = 10,
random.seed = 0, temp.file.location = NULL, edge.file.name = NULL,
verbose = TRUE, ...)
## S3 method for class 'Seurat'
FindClusters(object, graph.name = NULL,
modularity.fxn = 1, resolution = 0.8, algorithm = 1,
n.start = 10, n.iter = 10, random.seed = 0,
temp.file.location = NULL, edge.file.name = NULL, verbose = TRUE,
...)
|
object |
An object |
... |
Arguments passed to other methods |
modularity.fxn |
Modularity function (1 = standard; 2 = alternative). |
resolution |
Value of the resolution parameter, use a value above (below) 1.0 if you want to obtain a larger (smaller) number of communities. |
algorithm |
Algorithm for modularity optimization (1 = original Louvain algorithm; 2 = Louvain algorithm with multilevel refinement; 3 = SLM algorithm). |
n.start |
Number of random starts. |
n.iter |
Maximal number of iterations per random start. |
random.seed |
Seed of the random number generator. |
temp.file.location |
Directory where intermediate files will be written. Specify the ABSOLUTE path. |
edge.file.name |
Edge file to use as input for modularity optimizer jar. |
verbose |
Print output |
graph.name |
Name of graph to use for the clustering algorithm |
Returns a Seurat object and optionally the SNN matrix, object idents have been updated with new cluster info
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.