View source: R/frequentist_known.R
| correct_sero_misclass | R Documentation |
Funtions that implement the Rogen Gladen Estimator (1978)
correct_sero_misclass(num_pos, num_neg, sens = 0.806, spec = 0.83) correct_sero_misclass_p(p_A, sens = 0.891, spec = 0.792) rogan_gladen_estimator(prev.obs, Se, Sp)
num_pos |
number of positives |
num_neg |
number of negatives |
sens |
sensitivity |
spec |
specifcity |
p_A |
proportion of positives by imperfect test |
prev.obs |
observed prevalence |
Se |
sensitivity |
Sp |
specificity |
numeric vector
correct_sero_misclass: Corrects num positive by Sensitivity and Specificity. source: here
correct_sero_misclass_p: Takes known sensitivity and specificity of test and returns proportion of sample that are 'true' positive
rogan_gladen_estimator: Adjust the observed prevalence for a single Sensitivity and Specificity. Limitation: this allows values out of 0-1 range. source: here
Rogan, W. J., & Gladen, B. (1978). Estimating prevalence from the results of a screening test. American journal of epidemiology, 107(1), 71-76. https://doi.org/10.1093/oxfordjournals.aje.a112510
Azman, A. S., Lauer, S., Bhuiyan, M. T. R., Luquero, F. J., Leung, D. T., Hegde, S., ... & Lessler, J. (2020). Vibrio cholerae O1 transmission in Bangladesh: insights from a nationally-representative serosurvey. medRxiv. doi: https://doi.org/10.1101/2020.03.13.20035352
Takahashi, S., Greenhouse, B., & RodrÃguez-Barraquer, I. (2020). Are SARS-CoV-2 seroprevalence estimates biased?. doi: https://doi.org/10.1093/infdis/jiaa523
## Not run:
library(tidyverse)
library(skimr)
sensitivity = 0.93
specificity = 0.975
positive_pop <- c(321, 123, 100, 10)
negative_pop <- c(1234, 500, 375, 30)
# HopkinsIDD/Bangladesh-Cholera-Serosurvey ------------------------------
correct_sero_misclass_p(p_A = 0.74)
correct_sero_misclass(num_pos = positive_pop,
num_neg = negative_pop,
sens = 0.999,spec = 0.960)
correct_sero_misclass_p(p_A = positive_pop/negative_pop,
sens = 0.999,spec = 0.960)
# sakitakahashi/COVID-sensitivity -------------------------------------
tibble(
g=1:2,
p=seq(10L,20L,10L),
n=seq(200L,100L,-100L),
se=seq(0.9,0.8,-0.1),
sp=seq(0.8,0.9,0.1)) %>%
mutate(raw=p/n) %>%
mutate(adjust=pmap_dbl(.l = select(.,prev.obs=raw, Se=se, Sp=sp),
.f = rogan_gladen_estimator))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.