View source: R/bayesian_known.R
| sample_posterior_r_mcmc_hyperR | R Documentation |
one or sub population - known test performance - posterior distribution of prevalence. source here
sample_posterior_r_mcmc_hyperR(samps, posi, ni, se, sp, gam0)
samps |
number of MCMC samples desired |
posi |
number of positive tests population |
ni |
number of total tests in population |
se |
known sensitivity of test |
sp |
known specificity of test |
gam0 |
hyperprior variance parameter |
Prevalence posterior distribution
sample_posterior_r_mcmc_hyperR: sub population - known test performance - posterior distribution of prevalence. source here
Larremore, D. B., Fosdick, B. K., Bubar, K. M., Zhang, S., Kissler, S. M., Metcalf, C. J. E., ... & Grad, Y. (2020). Estimating SARS-CoV-2 seroprevalence and epidemiological parameters with uncertainty from serological surveys. medRxiv. doi: https://doi.org/10.1101/2020.04.15.20067066
## Not run:
library(tidyverse)
library(skimr)
sensitivity = 0.93
specificity = 0.975
positive_pop <- c(321, 123, 100, 10)
negative_pop <- c(1234, 500, 375, 30)
# __ ONE-POP ---------------------------------------------------------------
# reproduce this
# https://github.com/LarremoreLab/covid_serological_sampling/
# codebase/prevalence_onepopulation_workbook.ipynb
# input for reproducible examples
result_one <- sample_posterior_r_mcmc_hyperR(samps = 10000,
posi = positive_pop[1],
ni = negative_pop[1],
# se = sensitivity,
# sp = specificity,
se = 0.977,
sp = 0.986,
gam0 = 150
)
# reproducible example 00
result_one %>%
as_tibble()
result_one %>%
skim()
result_one %>%
as_tibble() %>%
ggplot(aes(x = r1)) +
geom_histogram(aes(y=..density..),binwidth = 0.005)
# __ SUB-POPS --------------------------------------------------------------
# reproduce this
# https://github.com/LarremoreLab/covid_serological_sampling/
# codebase/prevalence_subpopulations_workbook.ipynb
result_sub <- sample_posterior_r_mcmc_hyperR(samps = 10000,
posi = positive_pop,
ni = positive_pop+negative_pop,
se = sensitivity,
sp = specificity,
# se = 0.977,
# sp = 0.986,
gam0 = 150
)
# reproducible example
result_sub %>%
as_tibble()
result_sub %>%
skim()
result_sub %>%
as_tibble() %>%
rownames_to_column() %>%
select(-gam) %>%
pivot_longer(cols = -rowname,names_to = "estimates",values_to = "values") %>%
ggplot(aes(x = values, color = estimates)) +
geom_density()
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.