View source: R/frequentist_unknown.R
| rogan_gladen_stderr_unk | R Documentation |
Functions that implement the Rogen Gladen Estimator (1978)
rogan_gladen_stderr_unk(prev.obs, stderr.obs, prev.tru, Se, Sp, n_Se, n_Sp)
prev.obs |
observed prevalence |
stderr.obs |
observed standard error |
prev.tru |
true prevalence |
Se |
observed sensitivity |
Sp |
observed specificity |
n_Se |
numbers of infected individuals in the validation study |
n_Sp |
numbers of non-infected individuals in the validation study |
rogan_gladen_stderr_unk: Estimate Standard Error that captures the uncertainty of Se & Sp. assumption: results generated from independent studies. source: here
Kritsotakis, E. I. (2020). On the importance of population-based serological surveys of SARS-CoV-2 without overlooking their inherent uncertainties. Public Health in Practice, 100013. doi: https://doi.org/10.1016/j.puhip.2020.100013
## Not run:
library(tidyverse)
library(skimr)
sensitivity = 0.93
specificity = 0.975
positive_pop <- c(321, 123, 100, 10)
negative_pop <- c(1234, 500, 375, 30)
# prop.test(x = 321,n = 321+1234) %>% broom::glance()
# binom.test(x = 321,n = 321+1234) %>% broom::glance()
# https://stackoverflow.com/questions/17802320/r-proportion-confidence-interval-factor
# https://stackoverflow.com/questions/21719578/confidence-interval-for-binomial-data-in-r
tibble(positive=positive_pop,
negative=negative_pop) %>%
mutate(total=positive+negative,
prev_app=positive_pop/(positive_pop+negative_pop),
# assumes random sample from large population
stde_app=sqrt(prev_app * (1 - prev_app)/(total))) %>%
mutate(prev_tru=rogan_gladen_estimator(prev.obs = prev_app,
Se = 0.90,
Sp = 0.76),
stde_tru=rogan_gladen_stderr_unk(prev.obs = prev_app,
prev.tru = prev_tru,
stderr.obs = stde_app,
Se = 0.90,
Sp = 0.76,
n_Se = 1586,
n_Sp = 1586)) %>%
mutate(prev_tru_low=prev_tru-qnorm(0.975)*stde_tru,
prev_tru_upp=prev_tru+qnorm(0.975)*stde_tru)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.