knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(mclust) library(doseR) library(edgeR) xassetCountrySector <- read.table('~/doseR/extdata/format.out.Heliconius.LEG', sep="\t", header=TRUE, as.is=TRUE) GFF <- read.table('~/doseR/extdata/gff_parser.out.Heliconius.LEG', sep="\t", header=TRUE, as.is=TRUE) gene.chr.match <- GFF[match(xassetCountrySector$Gene, GFF$Gene), ] counts.leg <- as.matrix(round(xassetCountrySector[3:ncol(xassetCountrySector)] )) Groupings <- rep("X", ncol(xassetCountrySector)-2 ) segLengths <- xassetCountrySector$Len cd.leg <- new("countDat", data = counts.leg, replicates = factor(Groupings), annotation = gene.chr.match ) cd.leg@rowObservables$seglens = segLengths libsizes(cd.leg) <- unname(getLibsizes2(cd.leg, estimationType = "edgeR")) cd.leg@replicates<- as.factor(c("F","M","M","M","F","F" )) cd.leg@RPKM<- make_RPKM(cd.leg) cd.leg@annotation$something <- (gene.chr.match$Chr == "Z") cd.leg@annotation$something[cd.leg@annotation$something==TRUE] <- "Z" cd.leg@annotation$something[cd.leg@annotation$something==FALSE | is.na(cd.leg@annotation$something)] <- "A" ## Factorized anntoation column input: cd.leg@annotation$something <- factor(x = cd.leg@annotation$something, levels = c("A", "Z")) plotExpr(cd.leg, col=c("black","red","black","red"), notch=T, outline=FALSE, cex.axis=0.8, mode_mean=FALSE, LOG2=TRUE, clusterby_grouping=FALSE, groupings="something") # REMOVING 28% f_cd.leg <- dafsFilter(cd.leg) plotExpr(f_cd.leg, col=c("black","red","black","red"), notch=T, outline=FALSE, cex.axis=0.8, mode_mean=FALSE, LOG2=TRUE, clusterby_grouping=FALSE, groupings="something") # REMOVING 56% f_cd.leg <- quantFilter(cd.leg, lo.bound=0.2) plotExpr(f_cd.leg, col=c("black","red","black","red"), notch=T, outline=FALSE, cex.axis=0.8, mode_mean=FALSE, LOG2=TRUE, clusterby_grouping=FALSE, groupings="something") # REMOVING 71% f_cd.leg <- iqrxFilter(cd.leg, iqr_multi = 1.5) plotExpr(f_cd.leg, col=c("black","red","black","red"), notch=T, outline=FALSE, cex.axis=0.8, mode_mean=FALSE, LOG2=TRUE, clusterby_grouping=FALSE, groupings="something") outlist <- generateStats(f_cd.leg, groupings="something", mode_mean=TRUE) outlist$kruskal outlist$summary outlist <- test_diffs(f_cd.leg, groupings="something", mode_mean=TRUE, treatment1="M", treatment2="F") outlist$kruskal outlist$summary plotRatioBoxes(f_cd.leg, treatment1="M", treatment2="F", groupings="something", cex.axis=0.8, outline=FALSE) plotRatioDensity(f_cd.leg, treatment1="M", treatment2="F", mode_mean=TRUE, LOG2=TRUE, col =c("black","red"), lty = 1, type = "l", groupings="something") # LIN MODS dm<- cD.DM(cd.leg) #gl.MF <- glSeq(dm, "-1 + replicate") # TOO SLOW TO RUN EVERY TIME.. #glZ.MF <- glSeq(dm, "-1 + something + replicate") # TOO SLOW TO RUN EVERY TIME.. #gl.zD <- glSeq(dm, "-1 + replicate*something") # TOO SLOW TO RUN EVERY TIME..
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.