filePath <- system.file("external/", package="climetrics")
pr <- rast(paste0(filePath,'/precip.tif'))
tmax <- rast(paste0(filePath,'/tmax.tif'))
n <- readRDS(paste0(filePath,'/dates.rds')) # read corresponding dates
####################
# use rts function in the rts package to make a raster time series:
pr.t <- rts(pr,n)
tmax.t <- rts(tmax,n)
###########################
# test of the metric:
# The extreme argument corresponds to the first and second climate variables
# (i.e., x1 and x2; precipitation and temperature) that specify the percentile of the extreme
# condition in climate variable; here, 0.05 is used for precipitation; and 0.95 for temperature
nc <- novelClimate(pr.t,tmax.t,t1='1991/2000',t2='2010/2020')
expect_equal(round(sum(nc[],na.rm=T)),4)
nc2 <- ccm(pr.t,tmax.t,t1='1991/2000',t2='2010/2020',stat=c('nc'))
expect_equivalent(nc,nc2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.