R/repeatsOCBA.R

Defines functions repeatsOCBA OCBA

Documented in OCBA repeatsOCBA

###################################################################################################
#' Low Level OCBA
#'
#' This computes the Optimal Computing Budget Allocation.
#'
#' @param sMean vector of sample means of candidate solutions.
#' @param sVar vector of sample variances of candidate solutions. 
#' Note, that these should be non-zero. If the solutions with lowest or second lowest \code{mean} have zero variance,
#' This function will not distribute any additional evaluations, and return a vector of zeros.
#' If any other solution has zero observed variance, the respective solution will be ignored, and never
#' be assigned additional evaluations.
#' @param n number of already performed evaluations for each candidate solutions.
#' @param addBudget the number of additional evaluations (replications) that can be distributed to the candidate solutions.
#' 
#' @return A vector that specifies how often each solution should be evaluated.
#'
#' @seealso \code{\link{repeatsOCBA}} is based on this function.
#'
#' @export
#' @examples
#' ## Simple test
#' OCBA(1:10,1:10,rep(4,10),3)
#' ## Example from the referenced book:
#' res <- OCBA(c(1.2,2.1,3.4,4.87,6.05),c(3.3,2.0,4.5,5.3,6.9),c(12,6,5,5,4),100)
#' ##expected result: 
#' res == c(48,38,11,2,1)
#' @keywords internal
#' @references Chun-hung Chen and Loo Hay Lee. 2010. Stochastic Simulation Optimization: An Optimal Computing Budget Allocation (1st ed.). World Scientific Publishing Co., Inc., River Edge, NJ, USA. 
###################################################################################################
OCBA <- function(sMean,sVar,n,addBudget){  
  nd <-length(sMean) #the number of designs  
  # Some safety check
  if(length(sVar)!=nd)
    stop("Vectors sMean and sVar for OCBA are required to have the same length.")  
  # Total used budget after this step.
  totalBudget <- addBudget + sum(n)   
  # Best observed mean value
  bestMeanValue <- min(sMean)  
  # number of samples with best mean 
  nrOfBest <- sum(bestMeanValue==sMean)   
  sOrder <- order(sMean)
  # Fail safe for zero-variance cases
  indexVarZero <- numeric()
  if (any(sVar==0)){
    # If the best and/or second best have zero variance, OCBA is stopped. The budget is not used for re-evaluation.
    if (any(sVar[1:(nrOfBest+1)]==0)){
      return(numeric(nd)) #return only zeros.    #TODO: or handle second best var zero differently? e.g., 
    }
    # If other samples have zero variance, they are removed from the list before the OCBA calculation
		indexVarZero <- which(sVar==0) #TODO: zero variance fail safes need testing!
	}		
  # If all (remaining samples) have the same mean, just assign additional budget to one sample
  if (nrOfBest == (nd - length(indexVarZero) )){
		additionalReplications <- numeric(nd)
		additionalReplications[1] <- addBudget
		return(additionalReplications)
	}	  
  # ID of the best
  bestID <- sOrder[1:nrOfBest]  #TODO: dieser ansatz mit mehreren besten ist nicht im referenz code...
  # ID of the sec. best
	secondBestID <- sOrder[nrOfBest+1]  
  #initialize ratios
  ratio <- numeric(nd)
  # Ratio for sec best (N_s / N_s = 1)
  ratio[secondBestID] <- 1  
  # Ratio for all others 
  for(i in 1:nd){
    if(!(i %in% bestID) & i!=secondBestID & !(i %in% indexVarZero)){
      temp <- (sMean[secondBestID] -bestMeanValue ) / (sMean[i] -bestMeanValue )
      ratio[i] <- temp^2 * sVar[i] / sVar[secondBestID] #This is the Ratio N_i / N_s
    }  
  }  
  # Ratio for best
  if(length(indexVarZero)>0)
    temp <- sum(ratio[-indexVarZero]^2 / sVar[-indexVarZero])
  else
    temp <- sum(ratio^2 / sVar)
	ratio[bestID] <- sqrt(sVar[bestID] * temp)  
  # Initialize allocation loop
  active <- rep(TRUE,nd)
  moreAlloc <- TRUE
  tempBudget <- totalBudget
	desiredReplications <- numeric(nd)
  # Allocation loop
	while(moreAlloc) {
		moreAlloc <- FALSE		
    # sum of ratios of active samples
		ratioSum <- sum(ratio[active])    
    # calculate number of desired replications of active samples
		desiredReplications[active] <- floor((tempBudget/ratioSum)*ratio[active])
    #print(desiredReplications)
    #print(floor((tempBudget/ratioSum)*ratio[active]))
    # determine samples that already have reached or exceeded the desired number of replications
		moreThanDesired <- (desiredReplications < n)
    # set number of desired replications to number of existing replications
		desiredReplications[moreThanDesired] <- n[moreThanDesired]
		moreAlloc <- any(moreThanDesired)
		active[moreThanDesired] <- FALSE
		if (moreAlloc) tempBudget<- totalBudget - sum(desiredReplications[!active])
	}
  #print(desiredReplications)
	additionalReplications <- desiredReplications - n
	## Differenz wird dem Besten zugeschlagen  #TODO: wenn mehrere beste: die mit der groessten varianz. 
                                             #Das ist ein bugfix, vorher haben alle das volle budget bekommen.
	tempBudget <- sum(desiredReplications)
  bestIdHighestVariance <- bestID[which.max(sVar[bestID])] #if sVar is also equal, choose first.
	additionalReplications[bestIdHighestVariance] <- additionalReplications[bestIdHighestVariance] + (totalBudget - tempBudget)
	additionalReplications
}
##test book example, zero variance cases, test sum of vector = addbudget...

###################################################################################################
#' Optimal Computing Budget Allocation
#'
#' A simple interface to the Optimal Computing Budget Allocation algorithm.
#'
#' @param x matrix of samples. Identical rows indicate repeated evaluations. Any sample should be evaluated at least twice, to get an estimate of the variance.
#' @param y observations of the respective samples. For repeated evaluations, y should differ (variance not zero). 
#' @param budget of additional evaluations to be allocated to the samples.
#' 
#' @return A vector that specifies how often each solution should be evaluated.
#'
#' @seealso repeatsOCBA calls \code{\link{OCBA}}, which also provides some additional details.
#'
#' @export
#' @examples
#' x <- matrix(c(1:3,1:3),9,2)
#' y <- runif(9)
#' repeatsOCBA(x,y,10)
#' @references Chun-hung Chen and Loo Hay Lee. 2010. Stochastic Simulation Optimization: An Optimal Computing Budget Allocation (1st ed.). World Scientific Publishing Co., Inc., River Edge, NJ, USA. 
###################################################################################################
repeatsOCBA <- function(x,y,budget){ #matrix x and budget for OCBA   #TODO: y matrix?
	x <- data.matrix(x)
	xlist <- split(x, row(x))
	uniquex <- unique(xlist)
	sVar <- NULL
	sMean <- NULL
	n <- NULL
	for(xi in uniquex){
		ind <- xlist %in% list(xi)
		n <- c(n, sum(ind))
		sVar <- c(sVar, var(y[ind]))
		sMean <- c(sMean, mean(y[ind]))
	}
  OCBAres <- OCBA(sMean,sVar,n,budget) #TODO what if OCBAres is all zeros...
	uniquex <- matrix(unlist(uniquex), nrow = length(uniquex), byrow = TRUE)
  #return:
  uniquex[unlist(mapply(rep,1:length(OCBAres),OCBAres)),]
}
bartzbeielstein/SPOT documentation built on June 13, 2020, 5:58 p.m.