context("Must generate table probablity of being better for each comparator from a `mtc.result` object which is the output of a `mtc.run`")
test_that("`get_mtc_probBetter`, `mtc.prob.better.table`", {
# load mtc.result object from tests/data
# for details on how this object was generated refer to the generation script:
# tests/data/mtcResultGeneration.R
mtc_ex <- readRDS(system.file("tests",
"data",
"mtc_result_output.RDS",
package = "gemtcPlus"))
# # TESTING `get_mtc_probBeter`
# The example data contains treatement labels A, B, C, D, E, and F
# Generate the output for treatment comparisson all vs "A"
output_1 <- get_mtc_probBetter(mtc_ex, "A")
# check new treatment
expect_equal(unique(output_1$New), "A")
# check compartor
expect_equal(output_1$Comparator, LETTERS[2:6])
# check values
expect_equal(output_1$probNewBetter, c(0.989, 0.241, 0.411, 0.088, 0.755))
# # TESTING `get_mtc_probBeter`
# Now testing mtc.prob.better which doens't include a reference treatment
output_2 <- mtc.prob.better.table(mtc_ex, smaller.is.better = TRUE)
# checking class
expect_is(output_2, "mtc.prob.better.table")
# checking dimensions
expect_equal(dim(output_2), c(6, 6))
# checking dimnames
expect_equal(dimnames(output_2), list(c("A", "B", "C", "D", "E", "F"),
c("A", "B", "C", "D", "E", "F")))
# checking some values (no need for exhaustive check)
expect_equal(output_2["A", ], c("A" = NA,
"B" = 0.0105333333333333,
"C" = 0.7591,
"D" = 0.588833333333333,
"E" = 0.912166666666667,
"F" = 0.2448 ))
})
context("Must allow setting a threshold against which contrasts
are being compared with argument `threshold`")
test_that("`get_mtc_probBetter`, `mtc.prob.better.table`", {
# load mtc.result object from tests/data
# for details on how this object was generated refer to the generation script:
# tests/data/mtcResultGeneration.R
mtc_ex <- readRDS(system.file("tests",
"data",
"mtc_result_output.RDS",
package = "gemtcPlus"))
# The example data contains treatement labels A, B, C, D, E, and F
# Generate the output for treatment comparisson all vs "A" and
# threshold of 0.6
output_1 <- get_mtc_probBetter(mtc_ex, "A", threshold = 0.6)
# check values
expect_equal(output_1$probNewBetter, c(0, 0, 0, 0, 0.045))
# # TESTING `get_mtc_probBeter` with threshold 0.6
output_2 <- mtc.prob.better.table(mtc_ex,
smaller.is.better = TRUE,
threshold = 0.6)
# checking some values (no need for exhaustive check)
expect_equal(output_2["A", ], c("A" = NA,
"B" = 1,
"C" = 1,
"D" = 1,
"E" = 1,
"F" = 0.955366666666667))
})
context("Should allow specification of the convention of whether
samples being smaller or larger than threshold is of interest
with argument `smaller.is.better`")
test_that("`get_mtc_probBetter`, `mtc.prob.better.table`", {
# load mtc.result object from tests/data
# for details on how this object was generated refer to the generation script:
# tests/data/mtcResultGeneration.R
mtc_ex <- readRDS(system.file("tests",
"data",
"mtc_result_output.RDS",
package = "gemtcPlus"))
# The example data contains treatement labels A, B, C, D, E, and F
# Generate the output for treatment comparisson all vs "A" and
# setting smaller.is.better to FALSE (default TRUE)
output_1_sml <- get_mtc_probBetter(mtc_ex, "A", smaller.is.better = FALSE)
# create comparison output with smaller.is.better left as TRUE
output_1_cmp <- get_mtc_probBetter(mtc_ex, "A", smaller.is.better = TRUE)
# check compartor
expect_equal(output_1_sml$Comparator, LETTERS[2:6])
# check values are consistent with P_sml = 1 - P_cmp
expect_equal(output_1_sml$probNewBetter, 1 - output_1_cmp$probNewBetter)
# # TESTING `get_mtc_probBeter` with smaller.is.better set to both TRUE/FALSE
output_2_sml <- mtc.prob.better.table(mtc_ex,
smaller.is.better = TRUE)
output_2_cmp <- mtc.prob.better.table(mtc_ex,
smaller.is.better = FALSE)
# check values are consistent with P_sml = 1 - P_cmp
expect_equal(output_2_sml["A", ], 1 - output_2_cmp["A", ])
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.