##################################################################
## load required packages ##
##################################################################
library(RGMMBench)
library(dplyr)
relevant_mixture_functions <- list(
"EMMIXmfa" = list(name_fonction = em_EMMIXmfa_multivariate, list_params = list()),
"HDclassif" = list(name_fonction = em_HDclassif_multivariate, list_params = list()),
"em R" = list(name_fonction = emnmix_multivariate, list_params = list()),
"Rmixmod" = list(name_fonction = RGMMBench::em_Rmixmod_multivariate, list_params = list()),
"mixtools" = list(name_fonction = em_mixtools_multivariate, list_params = list()),
"bgmm" = list(name_fonction = em_bgmm_multivariate, list_params = list()),
"mclust" = list(name_fonction = em_mclust_multivariate, list_params = list(prior = NULL)),
"EMCluster" = list(name_fonction = em_EMCluster_multivariate, list_params = list()),
"GMKMcharlie" = list(name_fonction = em_GMKMcharlie_multivariate, list_params = list()),
"flexmix" = list(name_fonction = em_flexmix_multivariate, list_params = list())
)
###########################################################################
###########################################################################
### ###
### BENCHMARK PERFORMANCE IN A HD SETTING ###
### ###
###########################################################################
###########################################################################
#################################################################
## low overlap ##
#################################################################
RNGkind("L'Ecuyer-CMRG")
set.seed(20)
### low OVL, circular
theta_low_OVL_balanced_circular <- MixSim::MixSim(
BarOmega = 10^-4,
K = 2, p = 10, sph = TRUE, hom = FALSE,
ecc = 0.9, PiLow = 1, int = c(0.0, 2.0)
)
theta_low_OVL_balanced_circular_formatted <- list(
p = theta_low_OVL_balanced_circular$Pi,
mu = t(theta_low_OVL_balanced_circular$Mu),
sigma = theta_low_OVL_balanced_circular$S
)
HD_low_OVL_balanced_circular_distribution_parameters <- benchmark_multivariate_GMM_estimation(
id_scenario = 1,
initialisation_algorithms = c("hc", "kmeans", "rebmix"),
mixture_functions = relevant_mixture_functions,
sigma_values = list(theta_low_OVL_balanced_circular_formatted$sigma),
mean_values = list(theta_low_OVL_balanced_circular_formatted$mu),
proportions = list(theta_low_OVL_balanced_circular_formatted$p),
Nbootstrap = 100, nobservations = c(200, 2000)
)
HD_low_OVL_balanced_circular_time_computations <- compute_microbenchmark_multivariate(
initialisation_algorithms = c("kmeans"), id_scenario = 1,
mixture_functions = relevant_mixture_functions,
sigma_values = list(theta_low_OVL_balanced_circular_formatted$sigma),
mean_values = list(theta_low_OVL_balanced_circular_formatted$mu),
proportions = list(theta_low_OVL_balanced_circular_formatted$p),
Nbootstrap = 100, nobservations = c(100, 200, 500, 1000, 2000, 5000, 10000)
)
theta_low_OVL_unbalanced_circular <- MixSim::MixSim(
BarOmega = 10^-4,
K = 2, p = 10, sph = TRUE, hom = FALSE,
ecc = 0.90, PiLow = 0.1, int = c(0.0, 2.0)
)
theta_low_OVL_unbalanced_circular_formatted <- list(
p = theta_low_OVL_unbalanced_circular$Pi,
mu = t(theta_low_OVL_unbalanced_circular$Mu),
sigma = theta_low_OVL_unbalanced_circular$S
)
HD_low_OVL_unbalanced_circular_distribution_parameters <- benchmark_multivariate_GMM_estimation(
id_scenario = 2,
initialisation_algorithms = c("hc", "kmeans", "rebmix"),
mixture_functions = relevant_mixture_functions,
sigma_values = list(theta_low_OVL_unbalanced_circular_formatted$sigma),
mean_values = list(theta_low_OVL_unbalanced_circular_formatted$mu),
proportions = list(theta_low_OVL_unbalanced_circular_formatted$p),
Nbootstrap = 100, nobservations = c(200, 2000)
)
HD_low_OVL_unbalanced_circular_time_computations <- compute_microbenchmark_multivariate(
initialisation_algorithms = c("kmeans"), id_scenario = 2,
mixture_functions = relevant_mixture_functions,
sigma_values = list(theta_low_OVL_unbalanced_circular_formatted$sigma),
mean_values = list(theta_low_OVL_unbalanced_circular_formatted$mu),
proportions = list(theta_low_OVL_unbalanced_circular_formatted$p),
Nbootstrap = 100, nobservations = c(100, 200, 500, 1000, 2000, 5000, 10000)
)
### low OVL, full covariance
theta_low_OVL_balanced_eccentric <- MixSim::MixSim(
BarOmega = 10^-4,
K = 2, p = 10, sph = FALSE, hom = FALSE,
ecc = 0.90, PiLow = 1.0, int = c(0.0, 2.0)
)
theta_low_OVL_balanced_eccentric_formatted <- list(
p = theta_low_OVL_balanced_eccentric$Pi,
mu = t(theta_low_OVL_balanced_eccentric$Mu),
sigma = theta_low_OVL_balanced_eccentric$S
)
HD_low_OVL_balanced_eccentric_distribution_parameters <- benchmark_multivariate_GMM_estimation(
initialisation_algorithms = c("hc", "kmeans", "rebmix"),
mixture_functions = relevant_mixture_functions, id_scenario = 3,
sigma_values = list(theta_low_OVL_balanced_eccentric_formatted$sigma),
mean_values = list(theta_low_OVL_balanced_eccentric_formatted$mu),
proportions = list(theta_low_OVL_balanced_eccentric_formatted$p),
Nbootstrap = 100, nobservations = c(200, 2000)
)
HD_low_OVL_balanced_eccentric_time_computations <- compute_microbenchmark_multivariate(
initialisation_algorithms = c("kmeans"), id_scenario = 3,
mixture_functions = relevant_mixture_functions,
sigma_values = list(theta_low_OVL_balanced_eccentric_formatted$sigma),
mean_values = list(theta_low_OVL_balanced_eccentric_formatted$mu),
proportions = list(theta_low_OVL_balanced_eccentric_formatted$p),
Nbootstrap = 100, nobservations = c(100, 200, 500, 1000, 2000, 5000, 10000)
)
theta_low_OVL_unbalanced_eccentric <- MixSim::MixSim(
BarOmega = 10^-4,
K = 2, p = 10, sph = FALSE, hom = FALSE,
ecc = 0.90, PiLow = 0.1, int = c(0.0, 2.0)
)
theta_low_OVL_unbalanced_eccentric_formatted <- list(
p = theta_low_OVL_unbalanced_eccentric$Pi,
mu = t(theta_low_OVL_unbalanced_eccentric$Mu),
sigma = theta_low_OVL_unbalanced_eccentric$S
)
HD_low_OVL_unbalanced_eccentric_distribution_parameters <- benchmark_multivariate_GMM_estimation(
id_scenario = 4, initialisation_algorithms = c("hc", "kmeans", "rebmix"),
mixture_functions = relevant_mixture_functions,
sigma_values = list(theta_low_OVL_unbalanced_eccentric_formatted$sigma),
mean_values = list(theta_low_OVL_unbalanced_eccentric_formatted$mu),
proportions = list(theta_low_OVL_unbalanced_eccentric_formatted$p),
Nbootstrap = 100, nobservations = c(200, 2000)
)
HD_low_OVL_unbalanced_eccentric_time_computations <- compute_microbenchmark_multivariate(
initialisation_algorithms = c("kmeans"), id_scenario = 4,
mixture_functions = relevant_mixture_functions,
sigma_values = list(theta_low_OVL_unbalanced_eccentric_formatted$sigma),
mean_values = list(theta_low_OVL_unbalanced_eccentric_formatted$mu),
proportions = list(theta_low_OVL_unbalanced_eccentric_formatted$p),
Nbootstrap = 100, nobservations = c(100, 200, 500, 1000, 2000, 5000, 10000)
)
##################################################################
## high overlap ##
##################################################################
### high OVL, circular
theta_high_OVL_balanced_circular <- MixSim::MixSim(
BarOmega = 0.2,
K = 2, p = 10, sph = TRUE, hom = FALSE,
ecc = 0.9, PiLow = 1, int = c(0.0, 2.0)
)
theta_high_OVL_balanced_circular_formatted <- list(
p = theta_high_OVL_balanced_circular$Pi,
mu = t(theta_high_OVL_balanced_circular$Mu),
sigma = theta_high_OVL_balanced_circular$S
)
HD_high_OVL_balanced_circular_distribution_parameters <- benchmark_multivariate_GMM_estimation(
mixture_functions = relevant_mixture_functions, id_scenario = 5,
initialisation_algorithms = c("hc", "kmeans", "rebmix"),
sigma_values = list(theta_high_OVL_balanced_circular_formatted$sigma),
mean_values = list(theta_high_OVL_balanced_circular_formatted$mu),
proportions = list(theta_high_OVL_balanced_circular_formatted$p),
Nbootstrap = 100, nobservations = c(200, 2000)
)
HD_high_OVL_balanced_circular_time_computations <- compute_microbenchmark_multivariate(
initialisation_algorithms = c("kmeans"), id_scenario = 5,
mixture_functions = relevant_mixture_functions,
sigma_values = list(theta_high_OVL_balanced_circular_formatted$sigma),
mean_values = list(theta_high_OVL_balanced_circular_formatted$mu),
proportions = list(theta_high_OVL_balanced_circular_formatted$p),
Nbootstrap = 100, nobservations = c(100, 200, 500, 1000, 2000, 5000, 10000)
)
theta_high_OVL_unbalanced_circular <- MixSim::MixSim(
BarOmega = 0.2,
K = 2, p = 10, sph = TRUE, hom = FALSE,
ecc = 0.90, PiLow = 0.1, int = c(0.0, 2.0)
)
theta_high_OVL_unbalanced_circular_formatted <- list(
p = theta_high_OVL_unbalanced_circular$Pi,
mu = t(theta_high_OVL_unbalanced_circular$Mu),
sigma = theta_high_OVL_unbalanced_circular$S
)
HD_high_OVL_unbalanced_circular_distribution_parameters <- benchmark_multivariate_GMM_estimation(
mixture_functions = relevant_mixture_functions, id_scenario = 6,
initialisation_algorithms = c("hc", "kmeans", "rebmix"),
sigma_values = list(theta_high_OVL_unbalanced_circular_formatted$sigma),
mean_values = list(theta_high_OVL_unbalanced_circular_formatted$mu),
proportions = list(theta_high_OVL_unbalanced_circular_formatted$p),
Nbootstrap = 100, nobservations = c(200, 2000)
)
HD_high_OVL_unbalanced_circular_time_computations <- compute_microbenchmark_multivariate(
initialisation_algorithms = c("kmeans"), id_scenario = 6,
mixture_functions = relevant_mixture_functions,
sigma_values = list(theta_high_OVL_unbalanced_circular_formatted$sigma),
mean_values = list(theta_high_OVL_unbalanced_circular_formatted$mu),
proportions = list(theta_high_OVL_unbalanced_circular_formatted$p),
Nbootstrap = 100, nobservations = c(100, 200, 500, 1000, 2000, 5000, 10000)
)
### high OVL, full covariance
theta_high_OVL_balanced_eccentric <- MixSim::MixSim(
BarOmega = 0.2,
K = 2, p = 10, sph = FALSE, hom = FALSE,
ecc = 0.90, PiLow = 1, int = c(0.0, 2.0)
)
theta_high_OVL_balanced_eccentric_formatted <- list(
p = theta_high_OVL_balanced_eccentric$Pi,
mu = t(theta_high_OVL_balanced_eccentric$Mu),
sigma = theta_high_OVL_balanced_eccentric$S
)
HD_high_OVL_balanced_eccentric_distribution_parameters <- benchmark_multivariate_GMM_estimation(
mixture_functions = relevant_mixture_functions, id_scenario = 7,
initialisation_algorithms = c("hc", "kmeans", "rebmix"),
sigma_values = list(theta_high_OVL_balanced_eccentric_formatted$sigma),
mean_values = list(theta_high_OVL_balanced_eccentric_formatted$mu),
proportions = list(theta_high_OVL_balanced_eccentric_formatted$p),
Nbootstrap = 100, nobservations = c(200, 2000)
)
HD_high_OVL_balanced_eccentric_time_computations <- compute_microbenchmark_multivariate(
initialisation_algorithms = c("kmeans"), id_scenario = 7,
mixture_functions = relevant_mixture_functions,
sigma_values = list(theta_high_OVL_balanced_eccentric_formatted$sigma),
mean_values = list(theta_high_OVL_balanced_eccentric_formatted$mu),
proportions = list(theta_high_OVL_balanced_eccentric_formatted$p),
Nbootstrap = 100, nobservations = c(100, 200, 500, 1000, 2000, 5000, 10000)
)
theta_high_OVL_unbalanced_eccentric <- MixSim::MixSim(
BarOmega = 0.2,
K = 2, p = 10, sph = FALSE, hom = FALSE,
ecc = 0.90, PiLow = 0.1, int = c(0.0, 2.0)
)
theta_high_OVL_unbalanced_eccentric_formatted <- list(
p = theta_high_OVL_unbalanced_eccentric$Pi,
mu = t(theta_high_OVL_unbalanced_eccentric$Mu),
sigma = theta_high_OVL_unbalanced_eccentric$S
)
HD_high_OVL_unbalanced_eccentric_distribution_parameters <- benchmark_multivariate_GMM_estimation(
mixture_functions = relevant_mixture_functions, id_scenario = 8,
initialisation_algorithms = c("hc", "kmeans", "rebmix"),
sigma_values = list(theta_high_OVL_unbalanced_eccentric_formatted$sigma),
mean_values = list(theta_high_OVL_unbalanced_eccentric_formatted$mu),
proportions = list(theta_high_OVL_unbalanced_eccentric_formatted$p),
Nbootstrap = 100, nobservations = c(200, 2000)
)
HD_high_OVL_unbalanced_eccentric_time_computations <- compute_microbenchmark_multivariate(
initialisation_algorithms = c("kmeans"), id_scenario = 8,
mixture_functions = relevant_mixture_functions,
sigma_values = list(theta_high_OVL_unbalanced_eccentric_formatted$sigma),
mean_values = list(theta_high_OVL_unbalanced_eccentric_formatted$mu),
proportions = list(theta_high_OVL_unbalanced_eccentric_formatted$p),
Nbootstrap = 100, nobservations = c(100, 200, 500, 1000, 2000, 5000, 10000)
)
HD_distribution_parameters <- c(
HD_low_OVL_balanced_circular_distribution_parameters, HD_low_OVL_unbalanced_circular_distribution_parameters,
HD_low_OVL_balanced_eccentric_distribution_parameters, HD_low_OVL_unbalanced_eccentric_distribution_parameters,
HD_high_OVL_balanced_circular_distribution_parameters, HD_high_OVL_unbalanced_circular_distribution_parameters,
HD_high_OVL_balanced_eccentric_distribution_parameters, HD_high_OVL_unbalanced_eccentric_distribution_parameters
)
HD_time_computations <- c(
HD_low_OVL_balanced_circular_time_computations, HD_low_OVL_unbalanced_circular_time_computations,
HD_low_OVL_balanced_eccentric_time_computations, HD_low_OVL_unbalanced_eccentric_time_computations,
HD_high_OVL_balanced_circular_time_computations, HD_high_OVL_unbalanced_circular_time_computations,
HD_high_OVL_balanced_eccentric_time_computations, HD_high_OVL_unbalanced_eccentric_time_computations
)
saveRDS(
purrr::map_dfr(HD_distribution_parameters, "distributions"),
file.path("tables", "HD", "HD_distributions.rds")
)
saveRDS(
purrr::map_dfr(HD_distribution_parameters, "local_scores"),
file.path("tables", "HD", "HD_local_scores.rds")
)
saveRDS(
purrr::map_dfr(HD_distribution_parameters, "config"),
file.path("tables", "HD", "HD_configuration_scenario.rds")
)
saveRDS(
purrr::map_dfr(HD_time_computations, "time_data"),
file.path("tables", "HD", "HD_time_computation.rds")
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.