library(wrmbn) data("data") data("structure") uncorelate_node <- c("MTL", "QMX", "HCL", "CMB", "CTL", "CDX", "CBT") for(node in uncorelate_node) { data <- data[, -which(colnames(data) == node)] } for(node in uncorelate_node) { if(length(which(structure$from == node)) > 0) { structure <- structure[-which(structure$from == node), ] } else if(length(which(structure$to == node)) > 0) { structure <- structure[-which(structure$to == node), ] } } type <- "continuous" time_column <- "date" continuous_variable_names <- setdiff(colnames(data), time_column) discrete_variable_names <- c() desire_layers <- 3 normalize_type <- "mean_normalization" preprocessed <- preprocess_timeseries_data(data, type, time_column, continuous_variable_names, discrete_variable_names, desire_layers, normalize_type, quantile_number = -1, na_omit = TRUE)
library(wrmbn) continuous_data <- preprocessed$data desire_layers <- preprocessed$desire_layers quantile_number <- preprocessed$quantile_number continuous_variables <- preprocessed$continuous_variables discrete_variables <- preprocessed$discrete_variables known_structure <- structure is_variable_only <- TRUE corr_threshold <- 0 is_blacklist_internal <- TRUE is_blacklist_other <- TRUE custom_blacklist <- NULL custom_whitelist <- NULL bl_wl <- wrmbn::get_continuous_structure_filter(continuous_data, desire_layers, quantile_number, continuous_variables, discrete_variables, known_structure, corr_threshold, is_blacklist_internal, is_variable_only, is_blacklist_other, custom_blacklist, custom_whitelist)
library(wrmbn) data <- preprocessed$data #algorithms <- c("gs", "hc", "tabu", "iamb", "inter.iamb", "fast.iamb") algorithms <- c("hc", "tabu") target <- "MBT_3" wl <- bl_wl$whitelist bl <- bl_wl$blacklist result <- wrmbn::cross_validation_learning_algorithms(data, algorithms, wl, bl, target, n_cluster = 4, debug = TRUE) #boxplot(result$gs, result$hc, result$tabu, result$iamb, result$inter.iamb, result$fast.iamb, names = algorithms) boxplot(result$hc, result$tabu, names = algorithms)
library(wrmbn) training_type <- preprocessed$type data <- preprocessed$data number_layers <- preprocessed$desire_layers bl <- bl_wl$blacklist wl <- bl_wl$whitelist n_cluster <- 4 #algorithms <- c("gs", "hc", "tabu", "iamb", "inter.iamb", "fast.iamb") algorithms <- c("hc", "tabu") trained_models <- wrmbn::training_model(training_type, data, number_layers, bl, wl, n_cluster, algorithms, number_bootstrap = 500, debug = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.