x %>% subarray(where = list(age = "15+"))
x %>% subarray(age > 15)
replace_when <- funcion(...) {
dots <- list(...)
}
structural_zeros <- schools %>%
collapse_to(region, area) %>%
replace_when(region == "Bangkok" & area == "Rural" ~ 0L,
TRUE ~ 1L) %>%
Values()
extract_array(x, where)
extract_array(deaths, where = list(age = 1:4, sex = "Female", time = 12:13))
extract_array(deaths, where = list(age = "<15", sex = "Female", time = "2000-2015"))
collapse_to(c("a", "s"))
subarray(deaths,
age = c("<5", "15+"),
sex = "Female",
region = tourist_dest,
occupation = c(1:4, 10))
rw(scale = 0.1, incr = "30+")
rw(scale = 0.1, incr = list(age = c("<10", "50+"),
extract_array(deaths,
where = list(age = index_dim(deaths, name = "age", to = "15-19"),
sex = "Female",
time = index_dim(deaths, name = "time", equals = c("2018", "2019"))))
index_dim(deaths, name = "ans", from = "0-4", to = "20-24")
subarray(age > 5 & sex == "Female")
replace_where(age > 5 & sex == "Female", 0L)
rw(scale = 0.01,
incr = age > 30,
decr = age < 5)
i
exch(zero = non_tourist)
exch(reg_org == reg_dest ~ 0)
<- metadata(schools, dims = c("region", "area"))
structural_zeros <- Values(1L, metadata = md)
structura_zeros["Bangkok", "Rural"] <- 0L
where_array(x, name, equals = NULL, min = NULL, max = NULL)
where_dim(labels, equals = NULL, min = NULL, max = NULL)
structural_zeros <- Values(1L,
structural_zeros <- schools %>%
sum_to(dims = c("region", "area"))
structural_zeros[] <- FALSE
nhes_propn <- cotdata::nhes_est_obese %>%
dtabs(mean ~ age + sex + year) %>%
Values()
popn <- readRDS("out/popn.rds") %>%
align_to(nhes_pron, trim = TRUE)
nhes_est_obese <- (nhes_propn * popn) %>%
to_integer(force = TRUE)
population <- census %>%
interpolate() %>% ## or let function deduce these
extrapolate(n = 1)
mult <- Counts(c(0.45, 0.55),
dim = 2,
dimnames = list(sex = c("Female", "Male")))
births <- (mult * births_un) %>%
to_integer()
exposure <- make_exposure(popn)
death_rates <- deaths_un / exposure
deaths <- death_rates * exposure
check_same_meta(exposure, deaths)
constraint <- ValuesOne(NA_integer_,
labels = c("2-4", "5-9", "10-14", "15-18"),
name = "age")
popn <- popn %>%
collapse_to(region, age, sex) %>%
as.data.frame()
initial <- runif_array(min = schools, max = 1.4 * schools)
initial <- rpois_array(schools)
initial <- rpois_array(schools, prob = 0.4)
schools_all <- schools_all %>%
Counts() %>%
extrapolate(along = "age", labels = "2", type = "zero")
schools_all <- schools_all %>%
combine_custom(name = "age", breaks = c(2, 5, 10, 15, 18))
schools_obese %>% replace_vals(region == "Bangkok" & area == "Rural" & age > 5 ~ 0,
region == "Northeast" & age > 30 ~ exp(value))
schools_obese <- schools_obese %>%
mutate_array(region == "Bangkok" & area == "Rural" ~ 0L)
schools_obese <- schools_obese %>%
mutate_array(region == "Bangkok" & area == "Rural" ~ x^2)
schools_obese %>% replace_array(list(region = "Bangkok",
area = "Rural"),
val =
area = name = c("region", "area"),
equals = c("Bangkok", "Rural"),
fill = 0L)
schools %>% subarray(age > 10)
schools %>% subdim(name = "age", min = 10)
## demarray -------------------------------------------------------------------
## wherever 'name' appears, can use base name, and process two dimensions at once
## Aggregating - dimensions
## Low level
sum_except(x, names)
sum_along(x, names)
mean_except(x, names, wt)
mean_along(x, names, wt)
## High level
collapse_except(x, ..., wt = NULL) # weights required if Counts; uses NSE
collapse_along(x, ..., wt = NULL) # prohibited if Values; uses NSE
## Aggregating - categories (note that inherit starting dates, unbounded, etc from disag categories)
## Low level
sum_cat(x, name, old, new)
sum_custom(x, name, breaks)
sum_multi(x, name, width, break_min, break_max)
sum_lifetab(x, name, break_max)
sum_year(x, name)
sum_quarter(x, name)
sum_month(x, name)
mean_cat(x, name, old, new, wt = NULL)
mean_custom(x, name, breaks, wt = NULL)
mean_multi(x, name, width, break_min, break_max, wt = NULL)
mean_lifetab(x, name, break_max, wt = NULL)
mean_year(x, name, wt = NULL)
mean_quarter(x, name, wt = NULL)
mean_month(x, name, wt = NULL)
## High level
combine_cat(x, name, old, new, wt = NULL)
combine_custom(x, name, breaks, wt = NULL)
combine_multi(x, name, width, break_min, break_max, wt = NULL)
combine_lifetab(x, name, break_max, wt = NULL)
combine_year(x, name, wt = NULL)
combine_quarter(x, name, wt = NULL)
combine_month(x, name, wt = NULL)
## Broadcasting
broadcast_along(x, ..., dots = NULL)
## Disaggregating - dimensions
## Low level - or replace with other functions?
dim_dis_along(x, name, labels, dimtype = NULL, wt, rand = FALSE)
dim_rep_along(x, name, labels, dimtype = NULL, scale = 1)
## High level
extend_along(x, name, labels, dimtype = NULL) # Values only
## Disaggregating - dimensions
dis(x, name, wt, rand = FALSE)
dis_custom(x, name, breaks, wt = NULL)
dis_multi(x, name, width, break_min, break_max, wt = NULL)
dis_lifetab(x, name, break_max, wt = NULL)
dis_year(x, name, wt = NULL)
dis_quarter(x, name, wt = NULL)
dis_month(x, name, wt = NULL)
extend_along(x, name, labels, dimtype = NULL, wt = NULL, rand = FALSE)
split_cat(x, name, old, new, wt = NULL, rand = FALSE)
split_custom(x, name, breaks, wt = NULL, rand = FALSE)
split_multi(x, name, width, break_min, break_max, wt = NULL, rand = FALSE)
split_lifetab(x, name, break_max, wt = NULL, rand = FALSE)
split_year(x, name, wt = NULL, rand = FALSE)
split_quarter(x, name, wt = NULL, rand = FALSE)
split_month(x, name, wt = NULL, rand = FALSE)
add_points(x, name, at = NULL, width = NULL)
trim_to(x, y, test = FALSE)
pad_to(x, y, pad = NULL, test = FALSE)
align_dims(x, y, wt = NULL)
align_cat(x, y, name, wt = NULL)
align_to <- function(x, y, dim = TRUE, cat = TRUE, trim = TRUE, pad = NULL, test = FALSE) {
if (dim)
x <- (x = x, y = y, test = test)
if (combine)
x <- combine_to(x = x, y = y, test = test)
if (trim)
x <- trim_to(x = x, y = y, test = test)
if (pad)
x <- pad_to(x = x, y = y, pad = pad, test = test)
x
}
align_pair(x, name)
subarray(x, ..., dots = NULL)
to_quantiles(x, prob = c(0.025, 0.25, 0.5, 0.75, 0.975), na_rm = FALSE)
summary_iter(x, fun, ...)
thin_iter(x, n)
pivot_agetime(x, to)
attach_map(x, name, map)
to_net(x, name)
to_pool(x, name)
to_integer(x, force = TRUE)
explode(x)
set_open_first(x, name)
set_open_last(x, name)
set_break_min(x, name, value)
set_break_max(x, name, value)
is_regular(x, name)
step_length(x, name)
dimtypes(x)
dimtypes<-(x, value)
dbind(..., dots = NULL, along = NULL)
## demtech --------------------------------------------------------------------
make_exposure(x, triangles = FALSE, method = c("weighted", "standard"))
make_exposure_fert(x, dominant = "Female", age_min, age_max)
growth
median_age(x, method)
extrapolate(x, along = NULL, n = NULL, labels = NULL)
interpolate(x, along = NULL)
life_table
life_exp
rate_to_prob
prob_to_rate
## demaccount -----------------------------------------------------------------
accession
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.