######### Generic data analysis ###############
################## Toenail data ##############
## load data
data("toenail", package="DPpackage")
## fit for every package
## try to save some time by sampling more sparsely at higher AGQ
agqvec <- c(1:10,seq(11,30,by=2),seq(30,50,by=5),seq(60,100,by=10))
agqvec_glmmML <- agqvec[agqvec<75]
toenail_glmmML <- fit_gen(data=toenail,formula=outcome~treatment+visit,
cluster="ID",family="binomial",
pkg="glmmML",
agqvec=agqvec_glmmML)
## hmmm. slow ...
toenail_lme4 <- fit_gen(data=toenail,formula=outcome~treatment+visit+(1|ID),
family="binomial",
pkg="lme4",
agqvec=agqvec)
## input names of csv files and generate the same output
## toenail_SAS <-
########### Culcita data #############
culcita_glmmML <- fit_gen(data=culcita_dat,formula=predation~ttt,
cluster="block",family="binomial",
pkg="glmmML",
agqvec=agqvec_glmmML)
culcita_lme4 <- fit_gen(data=culcita_dat, formula= predation~ttt+(1|block),
family="binomial",
pkg="lme4",
agqvec=agqvec)
########### cbpp data #############
cbpp$obs <- 1:nrow(cbpp)
cbpp_glmmML <- fit_gen(data=cbpp,
formula=cbind(incidence,size-incidence)~period,
cluster="herd",family="binomial",
pkg="glmmML",
agqvec=agqvec_glmmML)
cbpp_lme4 <- fit_gen(data=cbpp,
formula=cbind(incidence, size - incidence) ~ period +
(1 | herd),
family="binomial",
pkg="lme4",
agqvec=agqvec)
############ Contraception Data ##################
data("Contraception", package="mlmRev")
Contraception$ch <- factor(Contraception$livch != 0, labels = c("N","Y"))
contraception_glmmML <- fit_gen(data= Contraception,
formula= use~age+I(age^2)+urban+ch,
cluster="district", family= "binomial",
pkg="glmmML",
agqvec=agqvec_glmmML)
contraception_lme4 <- fit_gen(data=Contraception,
formula=use~age+I(age^2)+urban+ch+(1|district),
family= "binomial",
pkg="lme4",
agqvec=agqvec)
save(list=ls(pattern="_(lme4|glmmML)$"),
file="AGQfits.RData")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.