#' construct a new pre-processing pipeline
#'
#' Creates a bare prepper object (a pipeline holder).
#'
#' TODO: Consider using a single environment in the finalized pre_processor
#' to store all step parameters, instead of individual environments
#' per step, potentially improving serialization and GC performance
#' for very large pipelines.
#'
#' @keywords internal
#' @noRd
prepper <- function() {
steps <- list()
ret <- list(steps=steps)
class(ret) <- c("prepper", "list")
ret
}
#' Add a pre-processing node to a pipeline
#'
#' @param x A `prepper` pipeline
#' @param step The pre-processing step to add
#' @param ... Additional arguments
#' @export
add_node.prepper <- function(x, step,...) {
x$steps[[length(x$steps)+1]] <- step
invisible(x) # Return invisibly for better pipe behavior
}
#' @export
prep.prepper <- function(x,...) {
# Use local to capture a stable copy of steps
local({
steps <- x$steps
orig_ncol <- NULL # Placeholder for original number of columns
# init transform: applies all forward steps and learns parameters
tinit <- function(X) {
xin <- X
# Store original dimension when initializing
assign("orig_ncol", ncol(X), envir = parent.env(environment()))
for (st in steps) {
xin <- st$forward(xin)
}
xin
}
# transform: apply learned steps in forward direction using partial 'colind'
tform <- function(X, colind=NULL) {
xin <- X
for (st in steps) {
xin <- st$apply(xin, colind)
}
xin
}
# reverse_transform: apply learned steps in reverse order
rtform <- function(X, colind=NULL) {
xin <- X
# Use rev() for clarity and robustness
for (st in rev(steps)) {
xin <- st$reverse(xin, colind)
}
xin
}
ret <- list(
preproc = x, # Store the original prepper structure if needed
init = tinit,
transform = tform,
reverse_transform = rtform,
# Store orig_ncol after init is called
get_orig_ncol = function() orig_ncol
)
class(ret) <- "pre_processor"
ret
})
}
#' @export
fresh.prepper <- function(x,...) {
p <- prepper()
for (step in x$steps) {
# Recreate each node by calling 'prep_node' again
p <- prep_node(p, step$name, step$create)
}
p
}
#' @export
init_transform.pre_processor <- function(x, X,...) {
chk::chk_matrix(X)
res <- x$init(X)
# After init, orig_ncol should be set, store it directly in the object?
# Modifying the object after creation might be tricky with environments.
# For now, rely on the closure environment within prep.prepper and get_orig_ncol.
res
}
#' @export
apply_transform.pre_processor <- function(x, X, colind=NULL,...) {
chk::chk_matrix(X)
# GENERAL CHECK: Ensure preprocessor is initialized before any application
# REMOVED: This check prevents using preprocessors with manually supplied parameters
# orig_ncol <- x$get_orig_ncol()
# if (is.null(orig_ncol)) {
# stop("Preprocessor must be initialized with 'init_transform' before applying transformations.")
# }
# COLIND SPECIFIC CHECKS: Only if colind is provided
if (!is.null(colind)) {
# Check colind against original dimension (orig_ncol is known to be non-NULL here)
# Need to get orig_ncol without stopping if NULL
orig_ncol <- x$get_orig_ncol() # May be NULL, that's okay now
chk::chk_vector(colind)
if (!is.null(orig_ncol)) { # Only check subset if orig_ncol is known
chk::chk_subset(colind, 1:orig_ncol)
}
# Ensure the provided X matches the dimension implied by colind
chk::chk_equal(ncol(X), length(colind))
}
x$transform(X, colind)
}
#' @export
reverse_transform.pre_processor <- function(x, X, colind=NULL,...) {
chk::chk_matrix(X)
# GENERAL CHECK: Ensure preprocessor is initialized before any reversal
# REMOVED: This check prevents using preprocessors with manually supplied parameters
# orig_ncol <- x$get_orig_ncol()
# if (is.null(orig_ncol)) {
# stop("Preprocessor must be initialized with 'init_transform' before reversing transformations.")
# }
# COLIND SPECIFIC CHECKS: Only if colind is provided
if (!is.null(colind)) {
# Check colind against original dimension (orig_ncol is known to be non-NULL here)
# Need to get orig_ncol without stopping if NULL
orig_ncol <- x$get_orig_ncol() # May be NULL, that's okay now
chk::chk_vector(colind)
if (!is.null(orig_ncol)) { # Only check subset if orig_ncol is known
chk::chk_subset(colind, 1:orig_ncol)
}
# Ensure the provided X matches the dimension implied by colind
chk::chk_equal(ncol(X), length(colind))
}
x$reverse_transform(X, colind)
}
#' @export
fresh.pre_processor <- function(x, preproc=prepper(),...) {
# Attempt to recreate the original pipeline from stored steps in x$preproc
# similar to fresh.prepper
chk::chk_s3_class(x$preproc, "prepper")
fresh(x$preproc)
}
#' prepare a new node and add to pipeline
#'
#' @param pipeline the pre-processing pipeline
#' @param name the name of the step to add
#' @param create the creation function
#'
#' @keywords internal
#' @noRd
prep_node <- function(pipeline, name, create, ...) {
node <- create()
ret <- list(name=name,
create=create,
forward=node$forward,
reverse=node$reverse,
apply=node$apply,
...)
class(ret) <- c(name, "pre_processor")
add_node(pipeline, ret)
}
new_pre_processor <- function(x) {
chk::chk_not_null(x[["forward"]])
chk::chk_not_null(x[["apply"]])
chk::chk_not_null(x[["reverse"]])
chk::chk_function(x[["forward"]])
chk::chk_function(x[["apply"]])
chk::chk_function(x[["reverse"]])
funlist <- x
structure(funlist,
class="pre_processing_step")
}
#' a no-op pre-processing step
#'
#' `pass` simply passes its data through the chain
#'
#' @param preproc the pre-processing pipeline
#' @return a `prepper` list
#' @export
pass <- function(preproc=prepper()) {
create <- function() {
list(
forward = function(X, colind=NULL) {
X
},
reverse = function(X, colind=NULL) {
X
},
apply = function(X, colind=NULL) {
X
}
)
}
prep_node(preproc, "pass", create)
}
#' center a data matrix
#'
#' remove mean of all columns in matrix
#'
#' @param cmeans optional vector of precomputed column means
#'
#' @inheritParams pass
#' @export
#' @importFrom Matrix colMeans
#' @return a `prepper` list
center <- function(preproc = prepper(), cmeans=NULL) {
create <- function() {
env <- rlang::new_environment()
env[["cmeans"]] <- cmeans
list(
forward = function(X) {
if (is.null(env$cmeans)) {
cm <- colMeans(X)
env$cmeans <- cm
} else {
cm <- env$cmeans
chk::chk_equal(ncol(X), length(cm))
}
sweep(X, 2, cm, "-")
},
apply = function(X, colind = NULL) {
cm <- env$cmeans
chk::chk_not_null(cm, "Means not initialized. Run init_transform first or supply 'cmeans'.")
if (is.null(colind)) {
sweep(X, 2, cm, "-")
} else {
chk::chk_equal(ncol(X), length(colind))
sweep(X, 2, cm[colind], "-")
}
},
reverse = function(X, colind = NULL) {
chk::chk_not_null(env$cmeans)
if (is.null(colind)) {
# Use only the means corresponding to the columns present in X
nc <- ncol(X)
if (nc > length(env$cmeans)) {
stop(sprintf("Internal error in center$reverse: ncol(X) [%d] > length(stored means) [%d]",
nc, length(env$cmeans)))
}
means_to_use <- env$cmeans[1:nc]
sweep(X, 2, means_to_use, "+")
} else {
chk::chk_equal(ncol(X), length(colind))
sweep(X, 2, env$cmeans[colind], "+")
}
}
)
}
prep_node(preproc, "center", create)
}
#' scale a data matrix
#'
#' normalize each column by a scale factor.
#'
#' @inheritParams pass
#'
#' @param type the kind of scaling, `unit` norm, `z`-scoring, or precomputed `weights`
#' @param weights optional precomputed weights
#' @return a `prepper` list
#' @export
colscale <- function(preproc = prepper(),
type = c("unit", "z", "weights"),
weights = NULL) {
type <- match.arg(type)
if (type != "weights" && !is.null(weights)) {
warning("colscale: weights ignored because type != 'weights'")
}
if (type == "weights") {
chk::chk_not_null(weights)
}
create <- function() {
env <- rlang::new_environment()
env$weights <- weights # Store precomputed weights if provided
list(
forward = function(X) {
if (is.null(env$weights)) { # Compute weights only if not precomputed
sds <- matrixStats::colSds(as.matrix(X)) # Ensure matrix for colSds
# Handle zero standard deviations robustly
zero_sd <- sds < .Machine$double.eps
if (any(zero_sd)) {
warning(sprintf("Columns %s have zero standard deviation. Setting scale factor to 1.",
paste(which(zero_sd), collapse=", ")))
}
sds[zero_sd] <- 1 # Set zero SDs to 1 to avoid Inf weights
if (type == "unit") {
# Unit norm scaling: weight is 1 / (sd * sqrt(N-1))
# Ensure N > 1 for sqrt
N <- nrow(X)
if (N <= 1) stop("Cannot compute unit norm scaling with N <= 1.")
scaling_factor <- sds * sqrt(N - 1)
# Check for zeros again after scaling (unlikely but possible)
scaling_factor[scaling_factor < .Machine$double.eps] <- 1
wts <- 1 / scaling_factor
} else { # type == "z"
# z-scaling weight is 1 / sd
wts <- 1 / sds
}
env$weights <- wts
} else {
wts <- env$weights
chk::chk_equal(length(wts), ncol(X))
}
sweep(X, 2, wts, "*")
},
apply = function(X, colind = NULL) {
chk::chk_not_null(env$weights, "Weights not initialized. Run init_transform first.")
wts <- env$weights
if (is.null(colind)) {
sweep(X, 2, wts, "*")
} else {
# Ensure X matches colind length, and colind is valid (checked by caller)
chk::chk_equal(ncol(X), length(colind))
sweep(X, 2, wts[colind], "*")
}
},
reverse = function(X, colind = NULL) {
chk::chk_not_null(env$weights, "Weights not initialized. Run init_transform first.")
wts <- env$weights
# Handle potential division by zero if weights were somehow zero
wts_safe <- wts
wts_safe[abs(wts) < .Machine$double.eps] <- 1 # Avoid division by zero
if (is.null(colind)) {
# Use only the weights corresponding to the columns present in X
nc <- ncol(X)
if (nc > length(wts_safe)) {
stop(sprintf("Internal error in colscale$reverse: ncol(X) [%d] > length(stored weights) [%d]",
nc, length(wts_safe)))
}
weights_to_use <- wts_safe[1:nc]
sweep(X, 2, weights_to_use, "/")
} else {
chk::chk_equal(ncol(X), length(colind))
sweep(X, 2, wts_safe[colind], "/")
}
}
)
}
prep_node(preproc, "colscale", create)
}
#' center and scale each vector of a matrix
#'
#' @param cmeans an optional vector of column means
#' @param sds an optional vector of sds
#' @inheritParams pass
#' @return a `prepper` list
#' @export
standardize <- function(preproc = prepper(), cmeans=NULL, sds=NULL) {
create <- function() {
env <- rlang::new_environment()
list(
forward = function(X) {
if (is.null(sds)) {
sds2 <- matrixStats::colSds(X)
} else {
chk::chk_equal(length(sds), ncol(X))
sds2 <- sds
}
if (is.null(cmeans)) {
cmeans2 <- colMeans(X)
} else {
chk::chk_equal(length(cmeans), ncol(X))
cmeans2 <- cmeans
}
if (all(sds2 == 0)) {
sds2[] <- mean(sds2[sds2>0], na.rm=TRUE)
sds2[is.na(sds2)] <- 1 # fallback if all zero
}
env$sds <- sds2
env$cmeans <- cmeans2
# TODO: [INEFF] This uses two sweep() calls. For large matrices,
# consider combining into a single pass or using optimized
# functions if performance becomes critical.
x1 <- sweep(X, 2, cmeans2, "-")
sweep(x1, 2, sds2, "/")
},
apply = function(X, colind = NULL) {
sds2 <- env$sds
cmeans2 <- env$cmeans
chk::chk_not_null(sds2, "SDs not initialized. Run init_transform first or supply 'sds'.")
chk::chk_not_null(cmeans2, "Means not initialized. Run init_transform first or supply 'cmeans'.")
if (is.null(colind)) {
# TODO: [INEFF] See forward() - two sweep() calls.
x1 <- sweep(X, 2, cmeans2, "-")
sweep(x1, 2, sds2, "/")
} else {
chk::chk_equal(ncol(X), length(colind))
# TODO: [INEFF] See forward() - two sweep() calls.
x1 <- sweep(X, 2, cmeans2[colind], "-")
sweep(x1, 2, sds2[colind], "/")
}
},
reverse = function(X, colind = NULL) {
sds2 <- env$sds
cmeans2 <- env$cmeans
chk::chk_not_null(sds2, "SDs not initialized.")
chk::chk_not_null(cmeans2, "Means not initialized.")
if (is.null(colind)) {
# Use only parameters corresponding to columns in X
nc <- ncol(X)
if (nc > length(sds2) || nc > length(cmeans2)) {
stop(sprintf("Internal error in standardize$reverse: ncol(X) [%d] inconsistent with stored params [%d, %d]",
nc, length(sds2), length(cmeans2)))
}
sds_to_use <- sds2[1:nc]
means_to_use <- cmeans2[1:nc]
# TODO: [INEFF] Two sweep() calls.
x0 <- sweep(X, 2, sds_to_use, "*")
sweep(x0, 2, means_to_use, "+")
} else {
chk::chk_equal(ncol(X), length(colind))
# TODO: [INEFF] Two sweep() calls.
x0 <- sweep(X, 2, sds2[colind], "*")
sweep(x0, 2, cmeans2[colind], "+")
}
}
)
}
prep_node(preproc, "standardize", create)
}
#' bind together blockwise pre-processors
#'
#' concatenate a sequence of pre-processors, each applied to a block of data.
#'
#' @param preprocs a list of initialized `pre_processor` objects
#' @param block_indices a list of integer vectors specifying the global column indices for each block
#' @return a new `pre_processor` object that applies the correct transformations blockwise
#' @examples
#'
#' p1 <- center() |> prep()
#' p2 <- center() |> prep()
#'
#' x1 <- rbind(1:10, 2:11)
#' x2 <- rbind(1:10, 2:11)
#'
#' p1a <- init_transform(p1,x1)
#' p2a <- init_transform(p2,x2)
#'
#' clist <- concat_pre_processors(list(p1,p2), list(1:10, 11:20))
#' t1 <- apply_transform(clist, cbind(x1,x2))
#'
#' t2 <- apply_transform(clist, cbind(x1,x2[,1:5]), colind=1:15)
#' @export
concat_pre_processors <- function(preprocs, block_indices) {
chk::chk_equal(length(preprocs), length(block_indices))
unraveled_ids <- unlist(block_indices)
# Check for overlaps and completeness more thoroughly?
if (any(duplicated(unraveled_ids))) stop("Duplicate indices found in block_indices.")
# Assuming indices cover a contiguous range for simplicity now, but could add checks.
max_idx <- max(unraveled_ids)
# Precompute mapping for efficiency and correct ordering
map_list <- lapply(seq_along(block_indices), function(i) {
list(orig_indices = block_indices[[i]],
proc = preprocs[[i]])
})
names(map_list) <- as.character(seq_along(map_list))
# Internal helper for applying functions blockwise respecting colind order
# TODO: [INEFF] This helper recalculates mappings on each call.
# If called repeatedly with the same colind structure (unlikely?),
# pre-calculating and caching the exact mappings might be faster.
apply_blockwise <- function(func, X, colind) {
chk::chk_matrix(X)
chk::chk_vector(colind)
# Remove unsupported named arguments x_arg, y_arg
chk::chk_equal(ncol(X), length(colind))
results_list <- vector("list", length(colind))
processed_cols <- logical(length(colind)) # Track which columns are processed
# Find which original blocks are relevant for the given colind
for (block_num in seq_along(map_list)) {
block_info <- map_list[[block_num]]
# Find which of the requested `colind` fall into this block's original indices
matched_in_colind_idx <- which(colind %in% block_info$orig_indices)
if (length(matched_in_colind_idx) > 0) {
# Get the subset of X corresponding to these columns
X_subset <- X[, matched_in_colind_idx, drop = FALSE]
# Get the original GLOBAL indices within this block that correspond to X_subset
orig_indices_in_block <- colind[matched_in_colind_idx]
# Map global indices to the LOCAL indices expected by the block's preprocessor
local_indices_for_proc <- match(orig_indices_in_block, block_info$orig_indices)
if (any(is.na(local_indices_for_proc))) {
stop("Internal error: Mismatch between requested global indices and block's original indices.")
}
# Apply the function using the LOCAL indices relative to the block
res_subset <- func(block_info$proc, X_subset, colind = local_indices_for_proc)
# Place results back in the correct positions in the output list
results_list[matched_in_colind_idx] <- lapply(seq_len(ncol(res_subset)), function(k) res_subset[,k])
processed_cols[matched_in_colind_idx] <- TRUE
}
}
if (!all(processed_cols)) {
stop("Some requested columns in 'colind' did not map to any provided block.")
}
# Combine results respecting original colind order
do.call(cbind, results_list)
}
ret <- list(
# Note: init_transform is not defined for concat_pre_processor
# User should initialize individual preprocs before concatenating.
transform = function(X, colind = NULL) {
chk::chk_matrix(X)
if (is.null(colind)) {
# Apply to full blocks in their natural order
chk::chk_equal(ncol(X), length(unraveled_ids))
res_list <- lapply(seq_along(map_list), function(i) {
block_info <- map_list[[i]]
apply_transform(block_info$proc, X[, block_info$orig_indices, drop = FALSE])
})
do.call(cbind, res_list)
} else {
# Apply blockwise respecting colind order
apply_blockwise(apply_transform, X, colind)
}
},
reverse_transform = function(X, colind = NULL) {
chk::chk_matrix(X)
if (is.null(colind)) {
# Reverse full blocks in their natural order
chk::chk_equal(ncol(X), length(unraveled_ids))
res_list <- lapply(seq_along(map_list), function(i) {
block_info <- map_list[[i]]
reverse_transform(block_info$proc, X[, block_info$orig_indices, drop = FALSE])
})
do.call(cbind, res_list)
} else {
# Reverse blockwise respecting colind order
apply_blockwise(reverse_transform, X, colind)
}
}
# Store map_list? Might be useful for introspection.
# map_list = map_list
)
class(ret) <- c("concat_pre_processor", "pre_processor")
ret
}
#' @export
apply_transform.concat_pre_processor <- function(x, X, colind=NULL,...) {
# Directly call the transform function stored within the concat object
x$transform(X, colind, ...)
}
#' @export
reverse_transform.concat_pre_processor <- function(x, X, colind=NULL,...) {
# Directly call the reverse_transform function stored within the concat object
x$reverse_transform(X, colind, ...)
}
#' Print a prepper pipeline
#'
#' Uses `crayon` to produce a colorful and readable representation of the pipeline steps.
#'
#' @param x A `prepper` object.
#' @param ... Additional arguments (ignored).
#' @export
print.prepper <- function(x,...) {
nn <- sapply(x$steps, function(st) st$name)
if (length(nn) == 0) {
cat(crayon::cyan("A preprocessor with no steps.\n"))
return(invisible(x))
}
cat(crayon::bold(crayon::green("Preprocessor pipeline:\n")))
for (i in seq_along(nn)) {
cat(crayon::magenta(" Step ", i, ": "), crayon::cyan(nn[i]), "\n", sep="")
}
invisible(x)
}
#' Print a pre_processor object
#'
#' Display information about a `pre_processor` using crayon-based formatting.
#'
#' @param x A `pre_processor` object.
#' @param ... Additional arguments (ignored).
#' @export
print.pre_processor <- function(x, ...) {
# A pre_processor comes from prep(prepper)
# It has x$preproc to show original steps.
# Let's show the chain of steps and indicate it's finalized.
cat(crayon::bold(crayon::green("A finalized pre-processing pipeline:\n")))
if (!is.null(x$preproc) && inherits(x$preproc, "prepper")) {
nn <- sapply(x$preproc$steps, function(st) st$name)
if (length(nn) == 0) {
cat(crayon::cyan(" No steps.\n"))
} else {
for (i in seq_along(nn)) {
cat(crayon::magenta(" Step ", i, ": "), crayon::cyan(nn[i]), "\n", sep="")
}
}
} else {
cat(crayon::cyan(" No associated prepper information.\n"))
}
invisible(x)
}
#' Print a concat_pre_processor object
#'
#' @param x A `concat_pre_processor` object.
#' @param ... Additional arguments (ignored).
#' @export
print.concat_pre_processor <- function(x, ...) {
cat(crayon::bold(crayon::green("A concatenated (blockwise) pre-processing pipeline:\n")))
cat(crayon::cyan(" This object applies different pre-processors to distinct column blocks.\n"))
invisible(x)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.