# Copyright 2019 Province of British Columbia
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and limitations under the License.
#' @title Calculate annual (and seasonal) total cumulative flows
#'
#' @description Calculates annual and seasonal total flows, as volumetric discharge or water yields, from a daily streamflow data set.
#' For water year and seasonal data, the year is identified by the year in which the year or season ends. Two-seasons and
#' four-seasons per year are calculated, with each 6 and 3-month seasons starting with the first month of the year (Jan for
#' calendar year, specified for water year). Each season is designated by the calendar or water year in which it occurs.
#' Calculates statistics from all values from complete years, unless specified. Returns a tibble with statistics.
#'
#' @inheritParams calc_annual_stats
#' @inheritParams add_basin_area
#' @param months Numeric vector of months to include in analysis (e.g. \code{6:8} for Jun-Aug). Default summarizes all
#' months (\code{1:12}). If not all months, seasonal total yield and volumetric flows will not be included.
#' @param use_yield Logical value indicating whether to calculate area-based water yield, in mm, instead of volumetric discharge.
#' Default \code{FALSE}.
#' @param include_seasons Logical value indication whether to include seasonal yields or volumetric discharges. Default \code{TRUE}.
#'
#' @return A tibble data frame with the following columns, ending with '_Volume_m3' or '_Yield_mm' based on selection:
#' \item{Year}{calendar or water year selected}
#' \item{Total_*}{annual (or selected months) total flow, in m3 or mm}
#' Default seasonal columns:
#' \item{MMM-MMM_*}{first of two season total flows, in m3 or mm}
#' \item{MMM-MMM_*}{second of two season total flows, in m3 or mm}
#' \item{MMM-MMM_*}{first of four season total flows, in m3 or mm}
#' \item{MMM-MMM_*}{second of four season total flows, in m3 or mm}
#' \item{MMM-MMM_*}{third of four season total flows, in m3 or mm}
#' \item{MMM-MMM_*}{fourth of four season total flows, in m3 or mm}
#' Transposing data creates a column of 'Statistics' and subsequent columns for each year selected.
#'
#' @examples
#' # Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
#' if (file.exists(tidyhydat::hy_downloaded_db())) {
#'
#' # Calculate annual total volumetric flow statistics
#' calc_annual_cumulative_stats(station_number = "08NM116")
#'
#' # Calculate annual total yield statistics with default HYDAT basin area
#' calc_annual_cumulative_stats(station_number = "08NM116",
#' use_yield = TRUE)
#'
#' # Calculate annual total yield statistics with a custom basin area
#' calc_annual_cumulative_stats(station_number = "08NM116",
#' use_yield = TRUE,
#' basin_area = 800,
#' start_year = 1980)
#'
#' }
#' @export
calc_annual_cumulative_stats <- function(data,
dates = Date,
values = Value,
groups = STATION_NUMBER,
station_number,
use_yield = FALSE,
basin_area,
water_year_start = 1,
start_year,
end_year,
exclude_years,
months = 1:12,
include_seasons = FALSE,
transpose = FALSE,
complete_years = FALSE){
## ARGUMENT CHECKS
## ---------------
if (missing(data)) {
data <- NULL
}
if (missing(station_number)) {
station_number <- NULL
}
if (missing(start_year)) {
start_year <- 0
}
if (missing(end_year)) {
end_year <- 9999
}
if (missing(exclude_years)) {
exclude_years <- NULL
}
if (missing(basin_area)) {
basin_area <- NA
}
if (include_seasons & !all(1:12 %in% months)) {
warning("Since not all months are selected, seasonal totals will not be included.", call. = FALSE)
}
logical_arg_check(use_yield)
water_year_checks(water_year_start)
years_checks(start_year, end_year, exclude_years)
logical_arg_check(transpose)
logical_arg_check(include_seasons)
months_checks(months)
logical_arg_check(complete_years)
## FLOW DATA CHECKS AND FORMATTING
## -------------------------------
# Check if data is provided and import it
flow_data <- flowdata_import(data = data,
station_number = station_number)
# Save the original columns (to check for STATION_NUMBER col at end) and ungroup if necessary
orig_cols <- names(flow_data)
flow_data <- dplyr::ungroup(flow_data)
# Check and rename columns
flow_data <- format_all_cols(data = flow_data,
dates = as.character(substitute(dates)),
values = as.character(substitute(values)),
groups = as.character(substitute(groups)),
rm_other_cols = TRUE)
## SET UP BASIN AREA
## -----------------
if (use_yield){
flow_data <- add_basin_area(flow_data, basin_area = basin_area)
flow_data$Basin_Area_sqkm_temp <- flow_data$Basin_Area_sqkm
}
## PREPARE FLOW DATA
## -----------------
# Fill missing dates, add date variables, and add WaterYear
flow_data <- analysis_prep(data = flow_data,
water_year_start = water_year_start)
flow_data <- add_seasons(data = flow_data, water_year_start = water_year_start,
seasons_length = 6)
flow_data <- dplyr::rename(flow_data, Seasons2 = Season)
flow_data <- add_seasons(data = flow_data, water_year_start = water_year_start,
seasons_length = 3)
flow_data <- dplyr::rename(flow_data, Seasons4 = Season)
flow_data <- filter_complete_yrs_val(complete_years, flow_data, keep_all = TRUE)
# Add cumulative flows
if (use_yield){
flow_data <- suppressWarnings(add_daily_yield(data = flow_data, basin_area = basin_area))
names(flow_data)[names(flow_data) == "Yield_mm"] <- "daily_total"
} else {
flow_data <- add_daily_volume(data = flow_data)
names(flow_data)[names(flow_data) == "Volume_m3"] <- "daily_total"
}
# Filter data FOR SELECTED YEARS FOR REMAINDER OF CALCS
flow_data <- dplyr::filter(flow_data, WaterYear >= start_year & WaterYear <= end_year)
# Stop if all data is NA
#no_values_error(flow_data$daily_total)
## CALCULATE STATISTICS
## --------------------
# Calculate annual stats
flow_data_months <- dplyr::filter(flow_data, Month %in% months)
annual_stats <- dplyr::summarize(dplyr::group_by(flow_data_months, STATION_NUMBER, WaterYear),
Cumulative_total = sum(daily_total, na.rm = FALSE))
annual_stats <- dplyr::ungroup(annual_stats)
names(annual_stats)[names(annual_stats) == "Cumulative_total"] <- ifelse(!use_yield,
paste("Total_Volume_m3"),
paste("Total_Yield_mm"))
annual_stats <- dplyr::rename(annual_stats, Year = WaterYear)
# Calculate seasonal stats
if(include_seasons & all(1:12 %in% months)) {
# Calculate two-seasons stats
seasons2_stats <- dplyr::summarize(dplyr::group_by(flow_data, STATION_NUMBER, WaterYear, Seasons2),
Cumulative_total = sum(daily_total, na.rm = FALSE))
seasons2_stats <- dplyr::ungroup(seasons2_stats)
seasons2_stats <- dplyr::mutate(seasons2_stats, Seasons2 = paste0(Seasons2, "_", ifelse(!use_yield, paste("Volume_m3"), paste("Yield_mm"))))
s2_order <- unique(seasons2_stats$Seasons2)
seasons2_stats <- tidyr::spread(seasons2_stats, Seasons2, Cumulative_total)
seasons2_stats <- dplyr::select(seasons2_stats, STATION_NUMBER, Year = WaterYear, s2_order)
# Calculate four-seasons stats
seasons4_stats <- dplyr::summarize(dplyr::group_by(flow_data, STATION_NUMBER, WaterYear, Seasons4),
Cumulative_total = sum(daily_total, na.rm = FALSE))
seasons4_stats <- dplyr::ungroup(seasons4_stats)
seasons4_stats <- dplyr::mutate(seasons4_stats, Seasons4 = paste0(Seasons4, "_", ifelse(!use_yield, paste("Volume_m3"), paste("Yield_mm"))))
s4_order <- unique(seasons4_stats$Seasons4)
seasons4_stats <- tidyr::spread(seasons4_stats, Seasons4, Cumulative_total)
seasons4_stats <- dplyr::select(seasons4_stats, STATION_NUMBER, Year = WaterYear, s4_order)
# Merge with annual stats
annual_stats <- merge(annual_stats, seasons2_stats, by = c("STATION_NUMBER", "Year"), all = TRUE)
annual_stats <- merge(annual_stats, seasons4_stats, by = c("STATION_NUMBER", "Year"), all = TRUE)
}
# Make an excluded years NA
annual_stats[annual_stats$Year %in% exclude_years, -(1:2)] <- NA
# Transpose data if selected
if(transpose){
options(scipen = 999)
# Get list of columns to order the Statistic column after transposing
stat_levels <- names(annual_stats[-(1:2)])
annual_stats <- tidyr::gather(annual_stats, Statistic, Value, -Year, -STATION_NUMBER)
annual_stats <- tidyr::spread(annual_stats, Year, Value)
# Order the columns
annual_stats$Statistic <- factor(annual_stats$Statistic, levels = stat_levels)
annual_stats <- dplyr::arrange(annual_stats, STATION_NUMBER, Statistic)
}
# Give warning if any NA values
if (!transpose) {
missing_test <- dplyr::filter(annual_stats, !(Year %in% exclude_years))
missing_values_warning(missing_test[, 3:ncol(missing_test)])
} else {
missing_test <- dplyr::select(annual_stats, -dplyr::one_of(as.character(exclude_years)))
missing_values_warning(missing_test[, 3:ncol(missing_test)])
}
# Recheck if station_number/grouping was in original flow_data and rename or remove as necessary
if(as.character(substitute(groups)) %in% orig_cols) {
names(annual_stats)[names(annual_stats) == "STATION_NUMBER"] <- as.character(substitute(groups))
} else {
annual_stats <- dplyr::select(annual_stats, -STATION_NUMBER)
}
dplyr::as_tibble(annual_stats)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.