# Copyright 2022 Province of British Columbia
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and limitations under the License.
#' @title Plot annual high and low flows for a specific year
#'
#' @description Plots an annual hydrograph for a specific year with the values and timing of annual n-day low and high flows.
#' The 'normal' range of percentiles also plotted for reference and are calculated from only years of complete data.
#' Shows the values and dates of max/mins for a specific year from the \code{calc_annual_extremes()} and
#' \code{plot_annual_extremes()} functions. Can remove either low or high flows using \code{plot_min = FALSE()} or
#' \code{plot_max = FALSE()}, respectively. Returns a list of plots.
#'
#' @inheritParams calc_annual_extremes
#' @inheritParams plot_annual_stats
#' @inheritParams plot_annual_normal_days_year
#' @param plot_min Logical value indicating whether to plot annual low flows. Default \code{TRUE}.
#' @param plot_max Logical value indicating whether to plot annual high flows. Default \code{TRUE}.
#' @param months Numeric vector of specific months to plot. For example, \code{3} for March, \code{6:8} for Jun-Aug.
#' Will be overridden for low or high flow statistics if \code{months_min} or \code{months_max} set, but will still
#' define the date limits on the x-axis. Default plots all months (\code{1:12}).
#'
#' @return A list of ggplot2 objects with the following for each station provided:
#' \item{Annual_Extremes_Year}{a plot that contains the an annual hydrograph and identified low and high flow periods}
#'
#' @seealso \code{\link{calc_annual_extremes}}
#' @seealso \code{\link{plot_annual_extremes}}
#'
#' @examples
#' # Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
#' if (file.exists(tidyhydat::hy_downloaded_db())) {
#'
#' # Plot the year 2000 with the annual maximum and minimums
#' plot_annual_extremes_year(station_number = "08NM116",
#' roll_days_max = 3,
#' roll_days_min = 7,
#' year_to_plot = 2001)
#'
#' }
#' @export
plot_annual_extremes_year <- function(data,
dates = Date,
values = Value,
groups = STATION_NUMBER,
station_number,
year_to_plot = NA,
roll_days = 1,
roll_days_min = NA,
roll_days_max = NA,
roll_align = "right",
water_year_start = 1,
start_year,
end_year,
exclude_years,
months = 1:12,
months_min = NA,
months_max = NA,
log_discharge = TRUE,
log_ticks = FALSE,
include_title = FALSE,
plot_normal_percentiles = TRUE,
normal_percentiles = c(25,75),
plot_min = TRUE,
plot_max = TRUE,
complete_years = FALSE,
ignore_missing = FALSE,
allowed_missing = ifelse(ignore_missing,100,0)){
# data = NULL
# dates = "Date"
# values = "Value"
# groups = "STATION_NUMBER"
# station_number = "08NM116"
# year_to_plot = NA
# roll_days = 1
# roll_days_min = NA
# roll_days_max = NA
# roll_align = "right"
# water_year_start = 1
# start_year = 0
# end_year <- 9999
# exclude_years = NULL
# months = 1:12
# months_min = NA
# months_max = NA
# log_discharge = TRUE
# log_ticks = FALSE
# include_title = FALSE
# plot_normal_percentiles = TRUE
# normal_percentiles = c(25,75)
# plot_min = TRUE
# plot_max = TRUE
# complete_years = FALSE
# ignore_missing = FALSE
# allowed_missing = ifelse(ignore_missing,100,0)
## ARGUMENT CHECKS
## ---------------
if (missing(data)) {
data <- NULL
}
if (missing(station_number)) {
station_number <- NULL
}
if (missing(exclude_years)) {
exclude_years <- NULL
}
if (missing(start_year)) {
start_year <- 0
}
if (missing(end_year)) {
end_year <- 9999
}
if (is.na(roll_days_min)) {
roll_days_min <- roll_days
}
if (is.na(roll_days_max)) {
roll_days_max <- roll_days
}
logical_arg_check(log_discharge)
log_ticks_checks(log_ticks, log_discharge)
logical_arg_check(include_title)
logical_arg_check(plot_normal_percentiles)
numeric_range_checks(normal_percentiles)
sort(normal_percentiles)
logical_arg_check(plot_min)
logical_arg_check(plot_max)
if (!plot_min & !plot_max) stop("Both plot_min and plot_max cannot be FALSE.", call. = FALSE)
## FLOW DATA CHECKS AND FORMATTING
## -------------------------------
# Check if data is provided and import it
flow_data <- flowdata_import(data = data, station_number = station_number)
# Check and rename columns
flow_data <- format_all_cols(data = flow_data,
dates = as.character(substitute("Date")),
values = as.character(substitute("Value")),
groups = as.character(substitute("STATION_NUMBER")),
rm_other_cols = TRUE)
# Create origin date to apply to flow_data and Q_daily later on
origin_date <- get_origin_date(water_year_start)
## CALC STATS
## ----------
flow_data_year <- add_date_variables(flow_data, water_year_start = water_year_start)
flow_data_year <- dplyr::filter(flow_data_year, WaterYear == year_to_plot)
flow_data_year <- dplyr::select(flow_data_year, STATION_NUMBER, Flow_Date = Date, DayofYear, Value)
#
daily_stats <- suppressMessages(
calc_daily_stats(data = flow_data,
percentiles = normal_percentiles,
water_year_start = water_year_start,
start_year = start_year,
end_year = end_year,
exclude_years = exclude_years,
complete_years = TRUE,
months = months))
names(daily_stats)[names(daily_stats) == paste0("P",min(normal_percentiles))] <- "MIN"
names(daily_stats)[names(daily_stats) == paste0("P",max(normal_percentiles))] <- "MAX"
daily_stats <- dplyr::mutate(daily_stats, Date = as.Date(DayofYear, origin = origin_date))
daily_stats <- dplyr::mutate(daily_stats, AnalysisDate = Date)
daily_stats
daily_stats <- dplyr::left_join(daily_stats, flow_data_year, by = c("STATION_NUMBER", "DayofYear"))
ann_peaks <- calc_annual_extremes(data = flow_data,
water_year_start = water_year_start,
start_year = start_year,
end_year = end_year,
exclude_years = exclude_years,
months = months,
months_min = months_min,
months_max = months_max,
roll_days = roll_days,
roll_days_min = roll_days_min,
roll_days_max = roll_days_max,
roll_align = roll_align,
complete_years = complete_years,
ignore_missing = ignore_missing,
allowed_missing = allowed_missing)
names(ann_peaks) <- c("STATION_NUMBER", "Year", "Min_Value", "Min_Doy",
"Min_Date", "Max_Value", "Max_Doy", "Max_Date")
ann_peaks_min <- dplyr::select(ann_peaks, STATION_NUMBER, Year, DayofYear = Min_Doy, dplyr::contains("Min"))
ann_peaks_min <- dplyr::mutate(ann_peaks_min,
Min_Start = dplyr::case_when(roll_align == "left" ~ DayofYear,
roll_align == "right" ~ DayofYear - roll_days_min + 1,
roll_align == "center" & roll_days_min %% 2 == 0 ~ DayofYear - (roll_days_min/2) + 1,
roll_align == "center" & roll_days_min %% 2 != 0 ~ DayofYear - ((roll_days_min - 1)/2)),
Min_Start = ifelse(Min_Start < min(daily_stats$DayofYear), min(daily_stats$DayofYear), Min_Start),
Min_Start = as.Date(Min_Start, origin = origin_date),
Min_End = dplyr::case_when(roll_align == "left" ~ DayofYear + roll_days_min - 1,
roll_align == "right" ~ DayofYear,
roll_align == "center" & roll_days_min %% 2 == 0 ~ DayofYear + (roll_days_min/2),
roll_align == "center" & roll_days_min %% 2 != 0 ~ DayofYear + ((roll_days_min - 1)/2)),
Min_End = ifelse(Min_End > max(daily_stats$DayofYear), max(daily_stats$DayofYear), Min_End),
Min_End = as.Date(Min_End, origin = origin_date))
ann_peaks_min <- dplyr::filter(ann_peaks_min, Year == year_to_plot)
ann_peaks_min <- dplyr::select(ann_peaks_min, -Year)
ann_peaks_max <- dplyr::select(ann_peaks, STATION_NUMBER, Year, DayofYear = Max_Doy, dplyr::contains("Max"))
ann_peaks_max <- dplyr::mutate(ann_peaks_max,
Max_Start = dplyr::case_when(roll_align == "left" ~ DayofYear,
roll_align == "right" ~ DayofYear - roll_days_max + 1,
roll_align == "center" & roll_days_max %% 2 == 0 ~ DayofYear - (roll_days_max/2) + 1,
roll_align == "center" & roll_days_max %% 2 != 0 ~ DayofYear - ((roll_days_max - 1)/2)),
Max_Start = ifelse(Max_Start < min(daily_stats$DayofYear), min(daily_stats$DayofYear), Max_Start),
Max_Start = as.Date(Max_Start, origin = origin_date),
Max_End = dplyr::case_when(roll_align == "left" ~ DayofYear + roll_days_max - 1,
roll_align == "right" ~ DayofYear,
roll_align == "center" & roll_days_max %% 2 == 0 ~ DayofYear + (roll_days_max/2),
roll_align == "center" & roll_days_max %% 2 != 0 ~ DayofYear + ((roll_days_max - 1)/2)),
Max_End = ifelse(Max_End > max(daily_stats$DayofYear), max(daily_stats$DayofYear), Max_End),
Max_End = as.Date(Max_End, origin = origin_date))
ann_peaks_max <- dplyr::filter(ann_peaks_max, Year == year_to_plot)
ann_peaks_max <- dplyr::select(ann_peaks_max, -Year)
ann_peaks <- dplyr::left_join(daily_stats, ann_peaks_min, by = c("STATION_NUMBER", "DayofYear"))
ann_peaks <- dplyr::left_join(ann_peaks, ann_peaks_max, by = c("STATION_NUMBER", "DayofYear"))
## PLOT STATS
## ----------
# Create axis label based on input columns
y_axis_title <- ifelse(as.character(substitute(values)) == "Volume_m3", "Volume (cubic metres)",
ifelse(as.character(substitute(values)) == "Yield_mm", "Yield (mm)",
"Discharge (cms)"))
high_col <- "dodgerblue2" #"#440154FF" #
low_col <- "orange" #"#FDE725FF" #
high_lab <- paste0(roll_days_max,"-day Maximum") #"#440154FF" #
low_lab <- paste0(roll_days_min,"-day Minimum") #"#440154FF" #
if (plot_min & plot_max) {
fils <- c(high_col,low_col)
shp <- c(21, 21)
colors <- c("black", "black")
names(fils) <- c(high_lab, low_lab)
} else if (!plot_min & plot_max) {
fils <- c(high_col)
shp <- c(21)
colors <- c("black")
names(fils) <- c(high_lab)
} else if (plot_min & !plot_max) {
fils <- c(low_col)
shp <- c(21)
colors <- c("black")
names(fils) <- c(low_lab)
}
if (plot_normal_percentiles) {
names <- c(names(fils),paste0("Historic Daily\nP",normal_percentiles[1],"-P",normal_percentiles[2]))
fils <- c(fils, "lightblue2")
shp <- c(shp, 22)
colors <- c(colors, "lightblue2")
names(fils) <- names
}
disch_name <- paste0("Daily Discharge")
# Create the daily stats plots
timing_plots <- dplyr::group_by(ann_peaks, STATION_NUMBER)
timing_plots <- tidyr::nest(timing_plots)
timing_plots <- dplyr::mutate(
timing_plots,
plot = purrr::map2(
data, STATION_NUMBER,
~ggplot2::ggplot(data = ., ggplot2::aes(x = Date)) +
{if(plot_normal_percentiles) ggplot2::geom_ribbon(ggplot2::aes_string(ymin = "MIN", ymax = "MAX"),
alpha = 0.4, colour = "lightblue2", fill = "lightblue2", na.rm = FALSE) } +
ggplot2::geom_line(ggplot2::aes(y = Value, colour = disch_name), size = 0.2, na.rm = TRUE) +
{if(plot_min & roll_days_min > 1) ggplot2::geom_rect(ggplot2::aes(xmin = Min_Start, xmax = Min_End, ymax =Inf, ymin=0),
fill = low_col, alpha = 0.2, na.rm = TRUE) }+
{if(plot_max & roll_days_max > 1) ggplot2::geom_rect(ggplot2::aes(xmin = Max_Start, xmax = Max_End, ymax =Inf, ymin=0),
fill = high_col, alpha = 0.2, na.rm = TRUE) }+
{if(plot_min & roll_days_min > 1) ggplot2::geom_segment(ggplot2::aes(x = Min_Start, xend = Min_End, y = Min_Value, yend=Min_Value),
colour = low_col, size = 1, na.rm = TRUE)}+
{if(plot_max & roll_days_max > 1) ggplot2::geom_segment(ggplot2::aes(x = Max_Start, xend = Max_End, y = Max_Value, yend=Max_Value),
colour = high_col, size = 1, na.rm = TRUE)}+
{if(plot_min) ggplot2::geom_vline(data = dplyr::filter(., !is.na(Min_Value)), ggplot2::aes(xintercept = Min_Start), colour = low_col, size = 1)}+
{if(plot_min & roll_days_min > 1) ggplot2::geom_vline(data = dplyr::filter(., !is.na(Min_Value)), ggplot2::aes(xintercept = Min_End), colour = low_col, size = 1)}+
{if(plot_max) ggplot2::geom_vline(data = dplyr::filter(., !is.na(Max_Value)), ggplot2::aes(xintercept = Max_Start), colour = high_col, size = 1)}+
{if(plot_max & roll_days_max > 1) ggplot2::geom_vline(data = dplyr::filter(., !is.na(Max_Value)) ,ggplot2::aes(xintercept = Max_End), colour = high_col, size = 1)}+
{if(plot_min) ggplot2::geom_point(ggplot2::aes(x= Date, y = Min_Value, fill = low_lab), size = 3.5, na.rm = TRUE, shape = 21) }+
{if(plot_max) ggplot2::geom_point(ggplot2::aes(x= Date, y = Max_Value, fill = high_lab), size = 3.5, na.rm = TRUE, shape = 21) }+
{if(!log_discharge) ggplot2::scale_y_continuous(expand = ggplot2::expansion(mult = c(0, 0.05)),
breaks = scales::pretty_breaks(n = 8),
labels = scales::label_number(scale_cut = append(scales::cut_short_scale(),1,1)))}+
{if(log_discharge) ggplot2::scale_y_log10(breaks = scales::log_breaks(n = 8, base = 10),
labels = scales::label_number(scale_cut = append(scales::cut_short_scale(),1,1)))} +
{if(log_discharge & log_ticks) ggplot2::annotation_logticks(base= 10, "left", colour = "grey25", size = 0.3,
short = ggplot2::unit(.07, "cm"), mid = ggplot2::unit(.15, "cm"),
long = ggplot2::unit(.2, "cm"))} +
ggplot2::scale_x_date(date_labels = "%b", date_breaks = "1 month",
limits = as.Date(c(as.character(min(daily_stats$AnalysisDate, na.rm = TRUE)),
as.character(max(daily_stats$AnalysisDate, na.rm = TRUE)))),
expand = c(0,0)) +
ggplot2::scale_fill_manual(values = fils, name = paste0("Annual Extremes\nfor ",
ifelse(water_year_start == 1,"Year ","Water Year "),
year_to_plot ), limits = names(fils))+
ggplot2::scale_colour_manual(values = stats::setNames("#264b96", disch_name), name = NULL,
limits = names(stats::setNames("#264b96", disch_name)))+
ggplot2::guides(fill = ggplot2::guide_legend(override.aes = list(shape = shp, colour = colors),
order = 1) )+
ggplot2::xlab("Day of Year") +
ggplot2::ylab(y_axis_title) +
{if (include_title & .y != "XXXXXXX") ggplot2::ggtitle(paste(.y)) } +
ggplot2::theme_bw()+
ggplot2::theme(axis.text = ggplot2::element_text(size = 10, colour = "grey25"),
axis.title = ggplot2::element_text(size = 12, colour = "grey25"),
axis.ticks = ggplot2::element_line(size = .1, colour = "grey25"),
axis.ticks.length = ggplot2::unit(0.05, "cm"),
axis.title.y = ggplot2::element_text(margin = ggplot2::margin(0,0,0,0)),
panel.border = ggplot2::element_rect(colour = "black", fill = NA, size = 1),
panel.grid.minor = ggplot2::element_blank(),
panel.grid.major = ggplot2::element_line(size = .1),
legend.text = ggplot2::element_text(size = 9, colour = "grey25"),
legend.key.size = ggplot2::unit(0.4, "cm"),
legend.spacing = ggplot2::unit(-0.4, "cm"),
legend.background = ggplot2::element_blank())
))
# Create a list of named plots extracted from the tibble
plots <- timing_plots$plot
if (nrow(timing_plots) == 1) {
names(plots) <- "Annual_Extremes_Year"
} else {
names(plots) <- paste0(timing_plots$STATION_NUMBER, "_Annual_Extremes_Year")
}
plots
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.