# Copyright 2022 Province of British Columbia
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and limitations under the License.
#' @title Plot annual count of normal days and days above and below normal
#'
#' @description Plots the number of days per year within, above and below the 'normal' range (typically between 25 and 75th percentiles) for
#' each day of the year. Upper and lower-range percentiles are calculated for each day of the year of from all years, and then each
#' daily flow value for each year is compared. Calculates statistics from all
#' values from complete years, unless specified. Data calculated using \code{calc_annual_normal_days()}
#' function. Returns a list of plots.
#'
#' @inheritParams calc_annual_normal_days
#' @inheritParams plot_annual_stats
#'
#' @return A list of ggplot2 objects with the following for each station provided:
#' \item{Annual_Normal_Days}{a plot that contains the number of days outside normal}
#' Default plots on each object:
#' \item{Normal_Days}{number of days per year below and above the daily normal (default 25/75th percentile)}
#' \item{Below_Normal_Days}{number of days per year below the daily normal (default 25th percentile)}
#' \item{Above_Normal_Days}{number of days per year above the daily normal (default 75th percentile)}
#'
#' @seealso \code{\link{calc_annual_normal_days}}
#'
#' @examples
#' # Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
#' if (file.exists(tidyhydat::hy_downloaded_db())) {
#'
#' # Plot annual statistics with default limits of normal (25 and 75th percentiles)
#' plot_annual_normal_days(station_number = "08NM116")
#'
#' # Plot annual statistics with custom limits of normal
#' plot_annual_normal_days(station_number = "08NM116",
#' normal_percentiles = c(10,90))
#'
#' }
#' @export
plot_annual_normal_days <- function(data,
dates = Date,
values = Value,
groups = STATION_NUMBER,
station_number,
normal_percentiles = c(25,75),
roll_days = 1,
roll_align = "right",
water_year_start = 1,
start_year,
end_year,
exclude_years,
months = 1:12,
include_title = FALSE){
## ARGUMENT CHECKS
## ---------------
if (missing(data)) {
data <- NULL
}
if (missing(station_number)) {
station_number <- NULL
}
if (missing(start_year)) {
start_year <- 0
}
if (missing(end_year)) {
end_year <- 9999
}
if (missing(exclude_years)) {
exclude_years <- NULL
}
logical_arg_check(include_title)
## FLOW DATA CHECKS AND FORMATTING
## -------------------------------
# Check if data is provided and import it
flow_data <- flowdata_import(data = data, station_number = station_number)
# Check and rename columns
flow_data <- format_all_cols(data = flow_data,
dates = as.character(substitute(dates)),
values = as.character(substitute(values)),
groups = as.character(substitute(groups)),
rm_other_cols = TRUE)
## CALC STATS
## ----------
normal_data <- calc_annual_normal_days(data = flow_data,
normal_percentiles = normal_percentiles,
roll_days = roll_days,
roll_align = roll_align,
water_year_start = water_year_start,
start_year = start_year,
end_year = end_year,
exclude_years = exclude_years,
months = months)
# Remove all leading NA years
normal_data <- dplyr::filter(dplyr::group_by(normal_data, STATION_NUMBER),
Year >= Year[min(which(!is.na(.data[[names(normal_data)[3]]])))])
normal_data <- tidyr::gather(normal_data, Statistic, Value, -STATION_NUMBER, -Year)
normal_data <- dplyr::mutate(normal_data, Statistic = gsub("_", " ", Statistic))
normal_data <- dplyr::mutate(normal_data, Statistic = gsub(" Days", "", Statistic))
normal_data <- dplyr::mutate(normal_data, Statistic = factor(Statistic,
levels = c("Above Normal", "Normal", "Below Normal")))
# Create plots for each STATION_NUMBER in a tibble
normal_plots <- dplyr::group_by(normal_data, STATION_NUMBER)
normal_plots <- tidyr::nest(normal_plots)
normal_plots <- dplyr::mutate(
normal_plots,
plot = purrr::map2(
data, STATION_NUMBER,
~ggplot2::ggplot(data = ., ggplot2::aes(x = Year, y = Value, fill = Statistic)) +
ggplot2::geom_bar(position = "stack", stat = "identity", na.rm = TRUE, width=1, colour = "black") +
ggplot2::scale_x_continuous(breaks = scales::pretty_breaks(n = 8),
expand = c(0,0))+
{if(length(unique(normal_data$Year)) < 8) ggplot2::scale_x_continuous(breaks = unique(normal_data$Year))}+
ggplot2::scale_y_continuous(breaks = scales::pretty_breaks(n = 6),
expand = c(0,0)) +
ggplot2::ylab("Number of Days") +
ggplot2::xlab(ifelse(water_year_start ==1, "Year", "Water Year"))+
# ggplot2::scale_fill_manual(values = colour_list, name = "Normal Category") +
ggplot2::scale_fill_viridis_d(name = "Category") +
ggplot2::theme_bw() +
{if (include_title & .y != "XXXXXXX") ggplot2::ggtitle(paste(.y)) } +
ggplot2::theme(panel.border = ggplot2::element_rect(colour = "black", fill = NA, size = 1),
panel.grid = ggplot2::element_line(size = .2),
axis.title = ggplot2::element_text(size = 12),
axis.text = ggplot2::element_text(size = 10),
plot.title = ggplot2::element_text(hjust = 1, size = 9, colour = "grey25"),
strip.background = ggplot2::element_blank(),
strip.text = ggplot2::element_text(hjust = 0, face = "bold", size = 10))
))
# Create a list of named plots extracted from the tibble
plots <- normal_plots$plot
if (nrow(normal_plots) == 1) {
names(plots) <- "Annual_Normal_Days"
} else {
names(plots) <- paste0(normal_plots$STATION_NUMBER, "_Annual_Normal_Days")
}
plots
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.