# Copyright 2019 Province of British Columbia
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and limitations under the License.
#' @title Plot long-term summary statistics from annual monthly mean flows
#'
#' @description Plots the long-term mean, median, maximum, minimum, and percentiles of annual monthly mean flow values for all
#' months and all data (Long-term) from a daily streamflow data set. Calculates statistics from all values, unless specified.
#' The Maximum-Minimum band can be removed using the \code{plot_extremes} argument and the percentile bands
#' can be customized using the \code{inner_percentiles} and \code{outer_percentiles} arguments. Data calculated using the
#' \code{calc_longterm_monthly_stats()} function. Returns a list of plots.
#'
#' @inheritParams calc_longterm_monthly_stats
#' @inheritParams plot_annual_stats
#' @inheritParams plot_daily_stats
#' @param add_year Numeric value indicating a year of daily flows to add to the daily statistics plot. Leave blank
#' or set to \code{NULL} for no years.
#' @param plot_extremes Logical value to indicate plotting a ribbon with the range of daily minimum and maximum flows.
#' Default \code{TRUE}.
#' @param inner_percentiles Numeric vector of two percentile values indicating the lower and upper limits of the
#' inner percentiles ribbon for plotting. Default \code{c(25,75)}, set to \code{NULL} for no inner ribbon.
#' @param outer_percentiles Numeric vector of two percentile values indicating the lower and upper limits of the
#' outer percentiles ribbon for plotting. Default \code{c(5,95)}, set to \code{NULL} for no outer ribbon.
#'
#' @return A list of ggplot2 objects with the following for each station provided:
#' \item{Long-term_Monthly_Statistics}{a plot that contains long-term flow statistics}
#' Default plots on each object:
#' \item{Monthly Mean}{mean of all annual monthly means for a given month over all years}
#' \item{Monthly Median}{median of all annual monthly means for a given month over all years}
#' \item{25-75 Percentiles Range}{a ribbon showing the range of data between the monthly 25th and 75th percentiles}
#' \item{5-95 Percentiles Range}{a ribbon showing the range of data between the monthly 5th and 95th percentiles}
#' \item{Max-Min Range}{a ribbon showing the range of data between the monthly minimum and maximums}
#'
#' @seealso \code{\link{calc_longterm_monthly_stats}}
#'
#' @examples
#' # Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
#' if (file.exists(tidyhydat::hy_downloaded_db())) {
#'
#' # Plot longterm monthly statistics using station_number argument with defaults
#' plot_longterm_monthly_stats(station_number = "08NM116",
#' start_year = 1980)
#'
#' # Plot longterm monthly statistics and add a specific year's daily flows
#' plot_longterm_monthly_stats(station_number = "08NM116",
#' start_year = 1980,
#' add_year = 1985)
#'
#' }
#' @export
plot_longterm_monthly_stats <- function(data,
dates = Date,
values = Value,
groups = STATION_NUMBER,
station_number,
roll_days = 1,
roll_align = "right",
water_year_start = 1,
start_year,
end_year,
exclude_years,
months = 1:12,
complete_years = FALSE,
ignore_missing = FALSE,
plot_extremes = TRUE,
plot_inner_percentiles = TRUE,
plot_outer_percentiles = TRUE,
inner_percentiles = c(25,75),
outer_percentiles = c(5,95),
add_year,
log_discharge = TRUE,
log_ticks = ifelse(log_discharge, TRUE, FALSE),
include_title = FALSE){
## ARGUMENT CHECKS
## ---------------
if (missing(data)) {
data <- NULL
}
if (missing(station_number)) {
station_number <- NULL
}
if (missing(start_year)) {
start_year <- 0
}
if (missing(end_year)) {
end_year <- 9999
}
if (missing(exclude_years)) {
exclude_years <- NULL
}
if (missing(add_year)) {
add_year <- NULL
}
logical_arg_check(log_discharge)
log_ticks_checks(log_ticks, log_discharge)
logical_arg_check(include_title)
ptile_ribbons_checks(inner_percentiles, outer_percentiles)
logical_arg_check(plot_extremes)
logical_arg_check(plot_inner_percentiles)
logical_arg_check(plot_outer_percentiles)
## FLOW DATA CHECKS AND FORMATTING
## -------------------------------
# Check if data is provided and import it
flow_data <- flowdata_import(data = data, station_number = station_number)
# Check and rename columns
flow_data <- format_all_cols(data = flow_data,
dates = as.character(substitute(dates)),
values = as.character(substitute(values)),
groups = as.character(substitute(groups)),
rm_other_cols = TRUE)
## CALC STATS
## ----------
longterm_stats_all <- suppressWarnings(
calc_longterm_daily_stats(data = flow_data,
water_year_start = water_year_start,
start_year = start_year,
end_year = end_year))
longterm_stats_all <- longterm_stats_all[,1:2]
longterm_stats <- calc_longterm_monthly_stats(data = flow_data,
percentiles = c(inner_percentiles, outer_percentiles),
roll_days = roll_days,
roll_align = roll_align,
water_year_start = water_year_start,
start_year = start_year,
end_year = end_year,
exclude_years = exclude_years,
months = months,
complete_years = complete_years,
ignore_missing = ignore_missing)
longterm_stats <- dplyr::left_join(longterm_stats_all, longterm_stats,
by = c("STATION_NUMBER", "Month"))
## PLOT STATS
## ----------
# Make longterm mean and median their own columns
# Make longterm mean and median their own columns
longterm_stats_months <- dplyr::filter(longterm_stats, Month != "Long-term")
# remove NA's from start and end for plotting
longterm_stats_months <- longterm_stats_months[cumsum(stats::complete.cases(longterm_stats_months)) != 0, ]
longterm_stats_months <- dplyr::arrange(longterm_stats_months, dplyr::desc(Month))
longterm_stats_months <- longterm_stats_months[cumsum(stats::complete.cases(longterm_stats_months)) != 0, ]
longterm_stats_months <- dplyr::arrange(longterm_stats_months, Month)
longterm_stats_longterm <- dplyr::filter(longterm_stats, Month == "Annual")
longterm_stats_longterm <- dplyr::select(longterm_stats_longterm, STATION_NUMBER, "LT_Mean" = Mean, "LT_Med" = Median)
longterm_stats <- dplyr::left_join(longterm_stats_months, longterm_stats_longterm, by = "STATION_NUMBER")
## ADD YEAR IF SELECTED
## --------------------
if(!is.null(add_year)){
# data for testing if year is in flow_data
flow_data_year <- add_date_variables(data = flow_data, water_year_start = water_year_start)
flow_data_year <- dplyr::filter(flow_data_year, WaterYear %in% start_year:end_year)
# if year is in data and not excluded, calculate those values
if (add_year %in% min(flow_data_year$WaterYear):max(flow_data_year$WaterYear) & !(add_year %in% exclude_years)) {
year_data <- calc_monthly_stats(data = flow_data,
roll_days = roll_days,
roll_align = roll_align,
water_year_start = water_year_start,
start_year = start_year,
end_year = end_year,
exclude_years = exclude_years,
ignore_missing = ignore_missing)
year_data <- dplyr::filter(year_data, Year == add_year)
year_data <- dplyr::mutate(year_data, Month = factor(Month, levels = c(month.abb, "Annual")))
year_data <- dplyr::select(year_data, STATION_NUMBER, Month, Year_mean = Mean)
# Warning if all daily values are NA from the add_year
for (stn in unique(year_data$STATION_NUMBER)) {
year_test <- dplyr::filter(year_data, STATION_NUMBER == stn)
if(all(is.na(year_test$Year_mean))) {
warning("Monthly data does not exist for the year listed in add_year and was not plotted.", call. = FALSE)
add_year <- NULL
}
}
if(!all(is.na(year_data$Year_mean))) {
longterm_stats <- dplyr::left_join(longterm_stats, year_data, by = c("STATION_NUMBER", "Month"))
}
} else {
warning("Monthly data does not exist for the year listed in add_year and was not plotted.", call. = FALSE)
add_year <- NULL
}
}
if (all(sapply(longterm_stats[3:ncol(longterm_stats)], function(x)all(is.na(x))))) {
longterm_stats[is.na(longterm_stats)] <- 1
}
# Create manual colour and fill options
fill_manual_list <- c()
if (plot_extremes) {
fill_manual_list <- c(fill_manual_list, "lightblue2")
names(fill_manual_list) <- c(names(fill_manual_list), "Minimum-Maximum")
}
if (is.numeric(outer_percentiles)) {
fill_manual_list <- c(fill_manual_list, "lightblue3")
outer_name <- paste0(min(outer_percentiles),"-",max(outer_percentiles), " Percentiles")
names(fill_manual_list) <- c(names(fill_manual_list)[1:(length(fill_manual_list)-1)], outer_name)
}
if (is.numeric(inner_percentiles)) {
fill_manual_list <- c(fill_manual_list, "lightblue4")
inner_name <- paste0(min(inner_percentiles),"-",max(inner_percentiles), " Percentiles")
names(fill_manual_list) <- c(names(fill_manual_list)[1:(length(fill_manual_list)-1)], inner_name)
}
colour_manual_list <- c("Mean" = "paleturquoise", "Median" = "dodgerblue4")
colour_manual_labels <- c("Mean", "Median")
if (is.numeric(add_year)) {
colour_manual_list <- c(colour_manual_list, "yr.colour" = "red")
colour_manual_labels <- c(colour_manual_labels, paste0(add_year, " Mean"))
}
# Create axis label based on input columns
y_axis_title <- ifelse(as.character(substitute(values)) == "Volume_m3", "Volume (cubic metres)", #expression(Volume~(m^3))
ifelse(as.character(substitute(values)) == "Yield_mm", "Yield (mm)",
"Discharge (cms)")) #expression(Discharge~(m^3/s))
# Plot
lt_plots <- dplyr::group_by(longterm_stats, STATION_NUMBER)
lt_plots <- tidyr::nest(lt_plots)
lt_plots <- dplyr::mutate(
lt_plots,
plot = purrr::map2(
data, STATION_NUMBER,
~ggplot2::ggplot(data = ., ggplot2::aes(x = Month, group = 1)) +
{if(plot_extremes) ggplot2::geom_ribbon(ggplot2::aes(ymin = Minimum, ymax = Maximum, fill = "Minimum-Maximum"), na.rm = FALSE)} +
{if(is.numeric(outer_percentiles) & plot_outer_percentiles)
ggplot2::geom_ribbon(ggplot2::aes_string(ymin = paste0("P",min(outer_percentiles)),
ymax = paste0("P",max(outer_percentiles)),
fill = paste0("'",outer_name,"'")), na.rm = FALSE)} +
{if(is.numeric(inner_percentiles) & plot_inner_percentiles)
ggplot2::geom_ribbon(ggplot2::aes_string(ymin = paste0("P",min(inner_percentiles)),
ymax = paste0("P",max(inner_percentiles)),
fill = paste0("'",inner_name,"'")), na.rm = FALSE)} +
ggplot2::geom_line(ggplot2::aes(y = Mean, color = "Mean"), size = .9, na.rm = TRUE) +
ggplot2::geom_line(ggplot2::aes(y = Median, color = "Median"), size = .9, na.rm = TRUE) +
ggplot2::geom_point(ggplot2::aes(y = Mean), size = 2, na.rm = TRUE, colour = "paleturquoise") +
ggplot2::geom_point(ggplot2::aes(y = Median), size = 2, na.rm = TRUE, colour = "dodgerblue4") +
{if(!log_discharge) ggplot2::scale_y_continuous(expand = c(0, 0), breaks = scales::pretty_breaks(n = 8),
labels = scales::label_number(scale_cut = append(scales::cut_short_scale(),1,1)))}+
{if(log_discharge) ggplot2::scale_y_log10(expand = c(0, 0), breaks = scales::log_breaks(n = 8, base = 10),
labels = scales::label_number(scale_cut = append(scales::cut_short_scale(),1,1)))} +
{if(log_discharge & log_ticks) ggplot2::annotation_logticks(base = 10, "l", colour = "grey25", size = 0.3, short = ggplot2::unit(0.07, "cm"),
mid = ggplot2::unit(0.15, "cm"), long = ggplot2::unit(0.2, "cm"))} +
ggplot2::scale_x_discrete(expand = c(0.01,0.01)) +
ggplot2::ylab(y_axis_title) +
ggplot2::xlab(NULL) +
ggplot2::theme_bw()+
ggplot2::labs(colour = 'Monthly Statistics') +
{if (include_title & unique(.y) != "XXXXXXX") ggplot2::labs(colour = paste0(.y,'\n \nMonthly Statistics')) } +
ggplot2::theme(legend.position = "right",
legend.justification = "right",
legend.text = ggplot2::element_text(size = 9),
panel.border = ggplot2::element_rect(colour = "black", fill = NA, size = 1),
panel.grid = ggplot2::element_line(size = .2),
axis.title = ggplot2::element_text(size = 12),
axis.text = ggplot2::element_text(size = 10),
legend.spacing = ggplot2::unit(-0.4, "cm"),
legend.background = ggplot2::element_blank()) +
ggplot2::scale_fill_manual(values = fill_manual_list) +
ggplot2::scale_color_manual(values = colour_manual_list, labels = colour_manual_labels) +
{if (is.numeric(add_year)) ggplot2::geom_line(ggplot2::aes(x= Month, y = Year_mean, colour = "yr.colour"), size = 0.9, na.rm = TRUE) } +
{if (is.numeric(add_year)) ggplot2::geom_point(ggplot2::aes(y = Year_mean), size = 2, na.rm = TRUE, colour = "red") } +
ggplot2::guides(colour = ggplot2::guide_legend(order = 1), fill = ggplot2::guide_legend(order = 2, title = NULL))
))
# Create a list of named plots extracted from the tibble
plots <- lt_plots$plot
if (nrow(lt_plots) == 1) {
names(plots) <- "Long-term_Monthly_Statistics"
} else {
names(plots) <- paste0(lt_plots$STATION_NUMBER, "_Long-term_Monthly_Statistics")
}
plots
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.