# Copyright 2022 Province of British Columbia
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and limitations under the License.
#' @title Plot monthly means and percent LTMADs
#'
#' @description Plot monthly means and add long-term mean annual discharge percentages. Calculates statistics
#' from all values, unless specified. Mean data calculated using \code{calc_longterm_daily_stats()} function.
#' Returns a list of plots.
#'
#' @inheritParams calc_monthly_stats
#' @inheritParams calc_longterm_mean
#' @inheritParams plot_monthly_stats
#' @param plot_months Numeric vector of months to include on the plot after calculating statistics.
#' For example, \code{3} for March or \code{6:8} for Jun-Aug. Differs from 'months' argument where that
#' argument filters for specific months, this one just chooses which months to plot. Default \code{1:12}.
#' @param percent_MAD Numeric vector of percentages of long-term mean annual discharge to add to the plot (ex. \code{20} for 20 percent
#' MAD or \code{c(5,10,20)} for multiple percentages). Set to \code{NA} for none. Default \code{c(10,20,100)}.
#'
#'
#' @return A list of ggplot2 objects for with the following plots for each station provided:
#' \item{Annual_Means}{a plot that contains annual means with the long-term mean as the x-axis intercept}
#'
#' @seealso \code{\link{calc_longterm_daily_stats}}
#' @seealso \code{\link{calc_longterm_mean}}
#'
#' @examples
#' # Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
#' if (file.exists(tidyhydat::hy_downloaded_db())) {
#'
#' # Plot monthly means
#' plot_monthly_means(station_number = "08NM116",
#' complete_years = TRUE)
#'
#' # Plot mean flows with custom LTMADs
#' plot_monthly_means(station_number = "08NM116",
#' complete_years = TRUE,
#' percent_MAD = c(5,10,20,100))
#'
#' # Plot mean flows and plot just summer months
#' plot_monthly_means(station_number = "08NM116",
#' complete_years = TRUE,
#' plot_months = 6:9)
#'
#' }
#' @export
plot_monthly_means <- function(data,
dates = Date,
values = Value,
groups = STATION_NUMBER,
station_number,
roll_days = 1,
roll_align = "right",
water_year_start = 1,
start_year,
end_year,
exclude_years,
months = 1:12,
plot_months = 1:12,
complete_years = FALSE,
ignore_missing = FALSE,
include_title = FALSE,
percent_MAD = c(10,20,100)){
## ARGUMENT CHECKS
## ---------------
if (missing(data)) {
data <- NULL
}
if (missing(station_number)) {
station_number <- NULL
}
if (missing(start_year)) {
start_year <- 0
}
if (missing(end_year)) {
end_year <- 9999
}
if (missing(exclude_years)) {
exclude_years <- NULL
}
logical_arg_check(include_title)
numeric_checks(percent_MAD)
## FLOW DATA CHECKS AND FORMATTING
## -------------------------------
# Check if data is provided and import it
flow_data <- flowdata_import(data = data, station_number = station_number)
# Check and rename columns
flow_data <- format_all_cols(data = flow_data,
dates = as.character(substitute(dates)),
values = as.character(substitute(values)),
groups = as.character(substitute(groups)),
rm_other_cols = TRUE)
## CALC STATS
## ----------
monthly_stats <- calc_longterm_daily_stats(data = flow_data,
roll_days = roll_days,
roll_align = roll_align,
water_year_start = water_year_start,
start_year = start_year,
end_year = end_year,
exclude_years = exclude_years,
months = months,
complete_years = complete_years,
ignore_missing = ignore_missing,
include_longterm = FALSE)
monthly_stats <- dplyr::select(monthly_stats, STATION_NUMBER, Month, Mean)
lt_mad <- suppressWarnings(calc_longterm_mean(data = flow_data,
roll_days = roll_days,
roll_align = roll_align,
water_year_start = water_year_start,
start_year = start_year,
end_year = end_year,
exclude_years = exclude_years,
months = months,
complete_years = complete_years))
if (!all(is.na(percent_MAD))) {
lt_mad_perc <- suppressWarnings(calc_longterm_mean(data = flow_data,
roll_days = roll_days,
roll_align = roll_align,
water_year_start = water_year_start,
start_year = start_year,
end_year = end_year,
exclude_years = exclude_years,
months = months,
complete_years = complete_years,
percent_MAD = percent_MAD)
)
if (100 %in% percent_MAD) {
lt_mad_perc <- lt_mad_perc[!names(lt_mad_perc) %in% '100%MAD']
}
if (!100 %in% percent_MAD) {
lt_mad_perc <- lt_mad_perc[!names(lt_mad_perc) %in% c('100%MAD','LTMAD')]
}
names(lt_mad_perc) <- gsub("%MAD","% LTMAD",names(lt_mad_perc))
lt_mad_perc <- tidyr::pivot_longer(lt_mad_perc, -1, names_to = "LTMAD_Percent", values_to = "Value")
monthly_stats <- dplyr::left_join(monthly_stats, lt_mad_perc, by = "STATION_NUMBER")
monthly_stats <- dplyr::filter(monthly_stats, Month %in% month.abb[plot_months])
if (100 %in% percent_MAD) {
monthly_stats <- dplyr::mutate(
monthly_stats,
LTMAD_Percent = factor(LTMAD_Percent, levels = c("LTMAD", unique(monthly_stats$LTMAD_Percent)[unique(monthly_stats$LTMAD_Percent) != "LTMAD"])))
} else {
monthly_stats <- dplyr::mutate(monthly_stats,
LTMAD_Percent = factor(LTMAD_Percent, levels = unique(monthly_stats$LTMAD_Percent)))
}
}
monthly_stats <- dplyr::left_join(monthly_stats, lt_mad, by = "STATION_NUMBER")
# return(monthly_stats)
monthly_stats <- dplyr::mutate(dplyr::group_by(monthly_stats, STATION_NUMBER, Month),
Mean = ifelse(duplicated(Mean), NA, Mean))
## PLOT STATS
## ----------
tidy_plots <- dplyr::group_by(monthly_stats, STATION_NUMBER)
tidy_plots <- tidyr::nest(tidy_plots)
tidy_plots <- dplyr::mutate(
tidy_plots,
plot = purrr::map2(
data, STATION_NUMBER,
~ggplot2::ggplot(data = ., ggplot2::aes(x = Month)) +
ggplot2::geom_bar(mapping = ggplot2::aes(y = Mean, fill = "Monthly Mean"),
stat = "identity", na.rm = TRUE, colour = "black", width = 0.9) +#dplyr::distinct(dplyr::select(.,1:2)),
{if(!all(is.na(percent_MAD))) ggplot2::geom_hline(data = .,
mapping = ggplot2::aes(yintercept = Value, colour = LTMAD_Percent),
size = 0.7, linetype = 2, na.rm = TRUE) }+
ggplot2::scale_y_continuous(breaks = scales::pretty_breaks(n = 10),
expand = ggplot2::expansion(mult = c(0, 0.05))) +
ggplot2::ylab("Discharge (cms)") +
{if (include_title & .y != "XXXXXXX") ggplot2::ggtitle(paste(.y)) } +
ggplot2::xlab("Month")+
ggplot2::scale_fill_manual(values = c("Monthly Mean" = "#21918c"), name = "Statistics")+
ggplot2::scale_color_viridis_d(option = "B", name = NULL, end = 0.9)+
ggplot2::guides(fill = ggplot2::guide_legend(order = 1),
colour = ggplot2::guide_legend(order = 2))+
ggplot2::theme_bw() +
ggplot2::theme(panel.border = ggplot2::element_rect(colour = "black", fill = NA, size = 1),
panel.grid = ggplot2::element_line(size = .2),
axis.title = ggplot2::element_text(size = 12),
axis.text = ggplot2::element_text(size = 10),
plot.title = ggplot2::element_text(hjust = 1, size = 9, colour = "grey25"),
panel.grid.minor.y = ggplot2::element_blank(),
legend.key.size = ggplot2::unit(0.4, "cm"),
legend.spacing = ggplot2::unit(-0.4, "cm"),
legend.background = ggplot2::element_blank())
))
# Create a list of named plots extracted from the tibble
plots <- tidy_plots$plot
if (nrow(tidy_plots) == 1) {
names(plots) <- "Monthly_Means"
} else {
names(plots) <- paste0(tidy_plots$STATION_NUMBER, "_Monthly_Means")
}
plots
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.