R/build_meta.R

Defines functions build_meta

Documented in build_meta

#' Meta data builder
#' @description creates a dataset that describes the
#'   characteristics of another dataset
#'
#' @param data a data frame with any combination of the following
#'   attributes: `label`, `unit`, `group`, `abbrs`, and `notes`.
#'   Columns in the meta data are based on these attributes.
#'
#' @param expand_binary_catgs T/F, should all categories be included for
#'   binary categorical variables? (This only applies to binary variables.)
#'
#' @param max_catgs largest number of categories accepted in a factor
#'   variable. A warning message is printed if a factor variable
#'   has more categories than `max_catg`.
#'
#' @param add_perc_to_cats T/F, should categorical variables in
#'   Table 1 have a % sign following their label? Note that if
#'   the user specifies `include_freq` = `TRUE` in [tibble_one],
#'   then the % symbol may be confusing to readers. However,
#'   when `include_freq` = `FALSE`, setting this to `TRUE`
#'   should clarify the table.
#'
#' @return A list containing components of `data`, `group_levels`,
#'   and `var_levels`. The `data` component comprises 8 columns:
#'
#'  - variable: variable name - this is the column name of the variable.
#'
#'  - label: variable labels - this is presented in tables
#'
#'  - type: type of variable (numeric or factor)
#'
#'  - unit: units for continuous variables
#'
#'  - group: a group identifier for each variable
#'
#'  - abbr: abbreviations associated with the label of a variable
#'
#'  - note: strings that will be place in tables as a footnote
#'
#'  - labels: labels of variables, including categories of factors.
#'
#'  The `group_levels` component shows the order that groups will
#'  appear in the table, and `var_levels` shows the order that
#'  variables will appear in the table and within groups.
#'
#' @export


build_meta <- function(
  data,
  expand_binary_catgs = FALSE,
  add_perc_to_cats = TRUE,
  max_catgs = 10
){

  variable = type = n_unique = label = NULL
  unit = group = abbr = note = labels = NULL

  mta_data <- tibble::tibble(
    variable = names(data),
    type     = map_chr(data, class),
    n_unique = map_int(data, ~length(unique(na.omit(.x)))),
    label    = map_chr(variable, ~get_label(data, .x)),
    unit     = map_chr(variable, ~get_units(data, .x)),
    group    = map_chr(variable, ~get_groups(data, .x)),
    abbr     = map(variable, ~get_abbrs(data, .x)),
    note     = map(variable, ~get_notes(data, .x)),
    labels   = pmap(
      .l = list(
        variable,
        type,
        label,
        n_unique,
        note
      ),
      .f = function(
        .variable,
        .type,
        .label,
        .n_unique,
        .note
      ){

        # all variables should either be factors or numerics
        if(.type != 'factor'){
          return(.label)
        }

        # if variable wasn't numeric, then it is a factor
        lvls <- levels(data[[.variable]])

        if(expand_binary_catgs || .n_unique > 2){
          return(c(.label, lvls))
        }

        # Handle Yes/No categorical variables as follows:
        # If the reference category is no, then just use
        # the variable label as the label for the exposure
        if(.n_unique == 2){

          if(lvls[2]=='Yes' || lvls[2]=='Y'){
            .label
          } else {
            lvls[2]
          }

        }
      }
    )
  ) %>%
    select(
      variable, label, type, unit, group, abbr, note, labels
    )

  if(add_perc_to_cats){
    mta_data %<>% mutate(unit = if_else(type == 'factor', '%', unit))
  }

  if(any(map_dbl(mta_data$labels, length)>=max_catgs)){

    out_variables <- map_dbl(mta_data$labels, length) %>%
      set_names(mta_data$variable) %>%
      enframe() %>%
      filter(value >= max_catgs) %>%
      mutate(out = paste0(name, ' (',value,' categories)')) %>%
      pluck('out')

    out_msg <- glue(
      "Some factors have > {max_catgs} categories. \\
      Should these be numeric? {list_things(out_variables)}"
    )

    warning(out_msg, call. = FALSE)

  }

  output <- structure(
    .Data = list(
      data = mta_data,
      group_levels = attr(data, 'group_levels'),
      var_levels = attr(data, 'var_levels')
    ),
    class = 'meta'
  )

  output

}
bcjaeger/KableOne documentation built on Oct. 16, 2019, 12:26 p.m.