Description Usage Arguments Details Author(s) References See Also

View source: R/func_simulations.R

This function is used to simulate from the model. It can be called with the estimated parameters (the default), the initial parameters, or with a set of parameters. The original design can be used in the simulations, or a different dataset may be used with the same structure (covariates) as the original design. This function is not yet implemented.

1 2 | ```
simul.saemix(saemixObject, nsim = saemixObject["options"]$nb.sim,
predictions = TRUE, res.var = TRUE, uncertainty = FALSE)
``` |

`saemixObject` |
an object returned by the |

`nsim` |
Number of simulations to perform. Defaults to the nb.simpred element in options |

`predictions` |
Whether the simulated parameters should be used to compute predictions. Defaults to TRUE |

`res.var` |
Whether residual variability should be added to the predictions. Defaults to TRUE |

`uncertainty` |
Uses uncertainty (currently not implemented). Defaults to FALSE |

This function is used to produce Visual Predictive Check graphs, as well as to compute the normalised prediction distribution errors (npde).

Emmanuelle Comets <[email protected]>, Audrey Lavenu, Marc Lavielle.

Brendel, K, Comets, E, Laffont, C, Laveille, C, Mentre, F. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide, Pharmaceutical Research 23 (2006), 2036-2049.

Holford, N. The Visual Predictive Check: superiority to standard diagnostic (Rorschach) plots (Abstract 738), in: 14th Meeting of the Population Approach Group in Europe, Pamplona, Spain, 2005.

`SaemixObject`

,`saemix`

,
`saemix.plot.data`

, `saemix.plot.convergence`

,
`saemix.plot.llis`

, `saemix.plot.randeff`

,
`saemix.plot.obsvspred`

, `saemix.plot.fits`

,
`saemix.plot.parcov`

, `saemix.plot.distpsi`

,
`saemix.plot.scatterresiduals`

, `saemix.plot.vpc`

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.