View source: R/probabilities.R
conditional_cases_logp | R Documentation |
There are two components to this:
p(cases_true_t|data, Rt, reporting_params, serial_params) \propto p(data|cases_true, reporting_params)
p(cases_true_t|cases_true_t_1, cases_true_t_2, ..., Rt, serial_params)
conditional_cases_logp(
cases_true,
observation_df,
cases_history,
Rt,
day_onset,
serial_parameters,
reporting_parameters,
kappa = NULL,
is_negative_binomial = FALSE
)
cases_true |
true case count originating on day_onset |
observation_df |
a two-column data frame with columns 'time_reported' and 'cases_reported' |
cases_history |
a vector containing history of cases arranged from recent to past |
Rt |
effective reproduction number |
day_onset |
day when case originates |
serial_parameters |
named list of 'mean' and 'sd' of gamma distribution characterising the serial interval distribution |
reporting_parameters |
named list of 'mean' and 'sd' of gamma distribution characterising the reporting delay distribution |
kappa |
overdispersion parameter |
is_negative_binomial |
if negative-binomial renewal model specified (defaults to FALSE) |
an (unnormalised) log-probability or vector of such log-probabilities
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.