sample_Rt | R Documentation |
If the renewal model is specified by a Poisson (the default):
cases_true_t ~ Poisson(Rt * \sum_tau=1^t_max w_t cases_true_t-tau)
If an Rt value is given a gamma prior, this results in a posterior distribution:
Rt ~ gamma(alpha + cases_true_t, beta + \sum_tau=1^t_max w_t cases_true_t-tau))
where alpha and beta are the shape and rate parameters of the gamma prior distribution. Here, we assume that Rt is constant over a set of onset times 'onset_time_set'. This means that the posterior for a single Rt value is given by:
Rt ~ gamma(alpha + \sum_{t in onset_time_set} cases_true_t,
beta + \sum_{t in onset_time_set}\sum_tau=1^t_max w_t cases_true_t-tau))
This function either returns a draw (or draws if ndraws>1) from this posterior, or it returns the Rt set that maximises it (if maximise=TRUE). Alternatively the renewal equation may be specified by a negative binomial distribution:
cases_true_t ~ NB(Rt * \sum_tau=1^t_max w_t cases_true_t-tau, kappa)
where kappa is the overdispersion parameter. In this case, importance sampling using the Poisson posterior as the importance distribution is used to estimate a negative binomial posterior.
sample_Rt(
cases_history_df,
Rt_prior_parameters,
serial_parameters,
kappa = NULL,
serial_max = 40,
ndraws = 1,
maximise = FALSE,
is_negative_binomial = FALSE,
nresamples = 100
)
cases_history_df |
a tibble with three columns: time_onset, cases_true and Rt_index |
Rt_prior_parameters |
a list with elements 'shape' and 'rate' describing the gamma prior for Rt |
serial_parameters |
named list of 'mean' and 'sd' of gamma distribution characterising the serial interval distribution |
kappa |
overdispersion parameter |
serial_max |
maximum point at which to truncate sum in renewal process |
ndraws |
number of draws of Rt |
maximise |
rather than sample a case count give the case count with the maximum probability (by default is FALSE) |
is_negative_binomial |
if negative-binomial renewal model specified (defaults to FALSE) |
nresamples |
number of importance resamples of Rt to perform if assuming a negative binomial model |
a tibble with three columns: "Rt_piece_index", "draw_index", "Rt"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.