#' Create a KDB distribution (Kuramaswamy double-bounded)
#'
#'
#' @param alpha The alpha parameter (first shape parameter).
#' `alpha` can be any value strictly greater than zero. Defaults to `1`.
#' @param beta The beta parameter (second shape parameter).
#' `beta` can be any value strictly greater than zero. Defaults to `1`.
#'
#' @return A `KDB` object.
#' @export
#'
#' @family continuous distributions
#'
#' @examples
#'
#' set.seed(27)
#'
#' X <- KDB(alpha=2,beta=5)
#' X
#'
#' random(X, 10)
#'
#' pdf(X, 0.7)
#' log_pdf(X, 0.7)
#'
#' cdf(X, 0.7)
#' quantile(X, 0.7)
#'
#' cdf(X, quantile(X, 0.7))
#' quantile(X, cdf(X, 0.7))
KDB <- function(alpha = 1, beta = 1) {
d <- list(alpha = alpha, beta = beta)
class(d) <- c("KDB", "distribution")
d
}
#' @export
print.KDB <- function(x, ...) {
cat(glue::glue("KDB distribution (alpha = {x$alpha}, beta = {x$beta})\n"))
}
#' Draw a random sample from a KDB distribution
#'
#' @inherit KDB examples
#'
#' @param d A `KDB` object created by a call to [KDB()].
#' @param n The number of samples to draw. Defaults to `1L`.
#' @param ... Unused. Unevaluated arguments will generate a warning to
#' catch mispellings or other possible errors.
#'
#' @return A numeric vector of length `n`.
#' @export
#'
random.KDB <- function(d, n = 1L, ...) {
if(!feas.KDB(d)){ # unfeasible parameters
out <- return(rep(NaN,n))
} else {
u <- stats::runif(n)
out <- quantile.KDB(d,u)
}
out
}
#' Evaluate the probability density function of a KDB distribution
#'
#' @inherit KDB examples
#' @inheritParams random.KDB
#'
#' @param x A vector of elements whose pdf you would like to
#' determine given the distribution `d`.
#' @param ... Unused. Unevaluated arguments will generate a warning to
#' catch mispellings or other possible errors.
#'
#' @return A vector of pdf values, one for each element of `x`.
#' @export
#'
pdf.KDB <- function(d, x, ...) {
if(!feas.KDB(d)){ # unfeasible parameters
out <- return(rep(NaN,length(x)))
} else {
out <- x
mask <- (x>=0 & x<=1)
out[!mask] <- 0
out[mask] <- d$alpha*d$beta * x[mask]^(d$alpha-1) * (1-x[mask]^d$alpha)^(d$beta-1)
}
out
}
#' @rdname pdf.KDB
#' @export
#'
log_pdf.KDB <- function(d, x, ...) {
log(pdf.KDB(d,x))
}
#' Evaluate the cumulative distribution function of a KDB distribution
#'
#' @inherit KDB examples
#' @inheritParams random.KDB
#'
#' @param x A vector of elements whose cumulative probabilities you would
#' like to determine given the distribution `d`.
#' @param ... Unused. Unevaluated arguments will generate a warning to
#' catch mispellings or other possible errors.
#'
#' @return A vector of probabilities, one for each element of `x`.
#' @export
#'
cdf.KDB <- function(d, x, ...) {
if(!feas.KDB(d)){ # unfeasible parameters
out <- return(rep(NaN,length(x)))
} else {
out <- x
out[x<0] <- 0
out[x>1] <- 1
mask <- (x>=0 & x<=1)
out[mask] <- 1-(1-x[mask]^d$alpha)^d$beta
}
out
}
#' Determine quantiles of a KDB distribution
#'
#' `quantile()` is the inverse of `cdf()`.
#'
#' @inherit KDB examples
#' @inheritParams random.KDB
#'
#' @param p A vector of probabilites.
#' @param ... Unused. Unevaluated arguments will generate a warning to
#' catch mispellings or other possible errors.
#'
#' @return A vector of quantiles, one for each element of `p`.
#' @export
#'
quantile.KDB <- function(d, p, ...) {
if(!feas.KDB(d)){ # unfeasible parameters
out <- return(rep(NaN,length(p)))
} else {
out <- p
out[p<0] <- NaN
out[p>1] <- NaN
mask <- (p>=0 & p<=1)
out[mask] <- (1-(1-p[mask])^(1/d$beta))^(1/d$alpha)
}
out
}
#' @export
feas.KDB<-function(d){
(d$alpha>0) & (d$beta>0)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.