#! /usr/bin/env Rscript
# get environment variables
MYSCRATCH <- Sys.getenv('MYSCRATCH')
RESULTDIR <- Sys.getenv('RESULTDIR')
STEPSIZE <- as.numeric(Sys.getenv('STEPSIZE'))
TASKID <- as.numeric(Sys.getenv('SLURM_ARRAY_TASK_ID'))
# set defaults if nothing comes from environment variables
MYSCRATCH[is.na(MYSCRATCH)] <- '.'
RESULTDIR[is.na(RESULTDIR)] <- '.'
STEPSIZE[is.na(STEPSIZE)] <- 1
TASKID[is.na(TASKID)] <- 0
# get command lines arguments
args <- commandArgs(trailingOnly = TRUE)
if(length(args) < 1){
stop("Not enough arguments. Please use args 'listsize', 'prepare', 'run <itemsize>' or 'merge'")
}
ns <- c(1000, 2500, 5000)
bigB <- 1000
parm <- expand.grid(seed=1:bigB,
n=ns)
# source in simulation Functions
source("~/hamming/makeData.R")
# load survtmle
library(survtmle, lib.loc = "/home/dbenkese/R/x86_64-unknown-linux-gnu-library/3.2/")
# get the list size #########
if (args[1] == 'listsize') {
cat(nrow(parm))
}
# execute prepare job ##################
if (args[1] == 'prepare') {
for(i in 1:nrow(parm)){
set.seed(parm$seed[i])
dat <- makeData(n=parm$n[i])
save(dat, file=paste0("~/hamming/scratch/dataList_n=",parm$n[i],
"_seed=",parm$seed[i],".RData"))
}
print(paste0('initial datasets saved to: ~/hamming/scratch/dataList ... .RData'))
}
# execute parallel job #################################################
if (args[1] == 'run') {
if (length(args) < 2) {
stop("Not enough arguments. 'run' needs a second argument 'id'")
}
id <- as.numeric(args[2])
print(paste(Sys.time(), "arrid:" , id, "TASKID:",
TASKID, "STEPSIZE:", STEPSIZE))
for (i in (id+TASKID):(id+TASKID+STEPSIZE-1)) {
print(paste(Sys.time(), "i:" , i))
print(parm[i,])
# load data
load(paste0("~/hamming/scratch/dataList_n=",parm$n[i],
"_seed=",parm$seed[i], ".RData"))
# set seed
set.seed(parm$seed[i])
# get glm formula for censoring and ftime
glm.ctime <- get.ctimeForm(trt = dat$trt, site = dat$adjustVars$site,
ftime = dat$ftime, ftype = dat$ftype)
# faster to call mean.tmle
object <- survtmle(ftime = dat$ftime,
ftype = dat$ftype,
adjustVars = dat$adjustVars,
trt = dat$trt,
glm.trt = "1",
glm.ftime = "trt*factor(site)",
glm.ctime = glm.ctime,
method = "mean",
t0=6)
# get trend estimate
trend <- trend_test(object)
# true value
nabla_g <- grad_g(object$est)
Upsilon_n <- nabla_g %*% cov(Reduce(cbind, object$ic)) %*% t(nabla_g)
# beta_0 <- mean(replicate(20, getTruth(Upsilon = Upsilon_n, n = 1e6)[2]))
beta_0 <- replicate(20, getTruth(Upsilon = Upsilon_n, n = 1e6))
rowMeans(beta_0)
# output should look like
# seed, n, truth
# beta_n, ci, cov
out <- c(parm$seed[i], parm$n[i], beta_0,
trend$beta, trend$ci,
as.numeric(trend$ci[1] < beta_0 & trend$ci[2] > beta_0))
# save output
save(out, file = paste0("~/hamming/scratch/out_n=",
parm$n[i],"_seed=",parm$seed[i],".RData.tmp"))
file.rename(paste0("~/hamming/scratch/out_n=",
parm$n[i],"_seed=",parm$seed[i],".RData.tmp"),
paste0("~/hamming/scratch/out_n=",
parm$n[i],"_seed=",parm$seed[i],".RData"))
}
}
# merge job ###########################
if (args[1] == 'merge') {
ns <- c(1000, 2500, 5000)
bigB <- 1000
parm <- expand.grid(seed=1:bigB,
n=ns)
rslt <- NULL
for(i in 1:nrow(parm)){
tmp <- tryCatch({
load(paste0("~/hamming/scratch/out_n=",
parm$n[i],"_seed=",parm$seed[i],".RData"))
out
}, error=function(e){
c(parm$seed[i], parm$n[i], rep(NA,8))
})
rslt <- rbind(rslt, tmp)
}
# format
out <- data.frame(rslt)
colnames(out) <- c("seed","n","truth","beta","ci_l","ci_u","cover")
save(out, file=paste0('~/hamming/out/allOut.RData'))
print("results saved")
tmp1 <- by(out, out$n, function(x){ 100*mean(x$beta - x$truth, na.rm = TRUE) })
tmp2 <- by(out, out$n, function(x){ 100*var(x$beta, na.rm = TRUE) })
tmp3 <- by(out, out$n, function(x){ 100*mean((x$beta - x$truth)^2, na.rm = TRUE) })
tmp4 <- by(out, out$n, function(x){ 100*mean(x$cover, na.rm = TRUE) })
tmp <- Reduce(cbind,list(tmp1,tmp2,tmp3,tmp4))
library(xtable)
colnames(tmp) <- c("Bias x 1e2","Variance x 1e2","Mean squared-error x 1e2", "Coverage (%)")
xtable(tmp)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.