dist.Multivariate.Cauchy: Multivariate Cauchy Distribution

Description Usage Arguments Details Value Author(s) See Also Examples

Description

These functions provide the density and random number generation for the multivariate Cauchy distribution.

Usage

1
2
dmvc(x, mu, S, log=FALSE)
rmvc(n=1, mu, S)

Arguments

x

This is either a vector of length k or a matrix with a number of columns, k, equal to the number of columns in scale matrix S.

n

This is the number of random draws.

mu

This is a numeric vector representing the location parameter, mu (the mean vector), of the multivariate distribution It must be of length k, as defined above.

S

This is a k x k positive-definite scale matrix S.

log

Logical. If log=TRUE, then the logarithm of the density is returned.

Details

The multivariate Cauchy distribution is a multidimensional extension of the one-dimensional or univariate Cauchy distribution. The multivariate Cauchy distribution is equivalent to a multivariate t distribution with 1 degree of freedom. A random vector is considered to be multivariate Cauchy-distributed if every linear combination of its components has a univariate Cauchy distribution.

Value

dmvc gives the density and rmvc generates random deviates.

Author(s)

Statisticat, LLC. software@bayesian-inference.com

See Also

dcauchy, dinvwishart, dmvcp, dmvt, and dmvtp.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
library(LaplacesDemon)
x <- seq(-2,4,length=21)
y <- 2*x+10
z <- x+cos(y) 
mu <- c(1,12,2)
Sigma <- matrix(c(1,2,0,2,5,0.5,0,0.5,3), 3, 3)
f <- dmvc(cbind(x,y,z), mu, Sigma)

X <- rmvc(1000, rep(0,2), diag(2))
X <- X[rowSums((X >= quantile(X, probs=0.025)) &
     (X <= quantile(X, probs=0.975)))==2,]
joint.density.plot(X[,1], X[,2], color=TRUE)

benmarwick/LaplacesDemon documentation built on May 12, 2019, 12:59 p.m.