#' Plot the posterior contact matrix
#'
#' @param object An object of class \code{stanigbm}. See \code{\link[Bernadette]{stan_igbm}}.
#'
#' @param y_data data.frame;
#' age-specific mortality counts in time. See \code{data(age_specific_mortality_counts)}.
#'
#' @param ... Optional arguments passed to \code{\link[ggplot2]{theme}}.
#'
#' @return A \code{grid.arrange} object which can be further customised using the \pkg{gridExtra} package.
#'
#' @references
#' Bouranis, L., Demiris, N. Kalogeropoulos, K. and Ntzoufras, I. (2022). Bayesian analysis of diffusion-driven multi-type epidemic models with application to COVID-19. arXiv: \url{https://arxiv.org/abs/2211.15229}
#'
#' @examples
#' \donttest{
#' # Age-specific mortality/incidence count time series:
#' data(age_specific_mortality_counts)
#' data(age_specific_cusum_infection_counts)
#'
#' # Import the age distribution for Greece in 2020:
#' age_distr <- age_distribution(country = "Greece", year = 2020)
#'
#' # Lookup table:
#' lookup_table <- data.frame(Initial = age_distr$AgeGrp,
#' Mapping = c(rep("0-39", 8),
#' rep("40-64", 5),
#' rep("65+" , 3)))
#'
#' # Aggregate the age distribution table:
#' aggr_age <- aggregate_age_distribution(age_distr, lookup_table)
#'
#' # Import the projected contact matrix for Greece:
#' conmat <- contact_matrix(country = "GRC")
#'
#' # Aggregate the contact matrix:
#' aggr_cm <- aggregate_contact_matrix(conmat, lookup_table, aggr_age)
#'
#' # Aggregate the IFR:
#' ifr_mapping <- c(rep("0-39", 8), rep("40-64", 5), rep("65+", 3))
#'
#' aggr_age_ifr <- aggregate_ifr_react(age_distr, ifr_mapping, age_specific_cusum_infection_counts)
#'
#' # Infection-to-death distribution:
#' ditd <- itd_distribution(ts_length = nrow(age_specific_mortality_counts),
#' gamma_mean = 24.19231,
#' gamma_cv = 0.3987261)
#'
#' # Posterior sampling:
#'
#' rstan::rstan_options(auto_write = TRUE)
#' chains <- 1
#' options(mc.cores = chains)
#'
#' igbm_fit <- stan_igbm(y_data = age_specific_mortality_counts,
#' contact_matrix = aggr_cm,
#' age_distribution_population = aggr_age,
#' age_specific_ifr = aggr_age_ifr[[3]],
#' itd_distr = ditd,
#' incubation_period = 3,
#' infectious_period = 4,
#' likelihood_variance_type = "linear",
#' ecr_changes = 7,
#' prior_scale_x0 = 1,
#' prior_scale_x1 = 1,
#' prior_scale_contactmatrix = 0.05,
#' pi_perc = 0.1,
#' prior_volatility = normal(location = 0, scale = 1),
#' prior_nb_dispersion = exponential(rate = 1/5),
#' algorithm_inference = "sampling",
#' nBurn = 10,
#' nPost = 30,
#' nThin = 1,
#' chains = chains,
#' adapt_delta = 0.6,
#' max_treedepth = 14,
#' seed = 1)
#'
#' # Visualise the posterior distribution of the random contact matrix:
#' plot_posterior_cm(object = igbm_fit,
#' y_data = age_specific_mortality_counts)
#'}
#' @export
#'
plot_posterior_cm <- function(object, y_data, ...){
check <- check_stanfit(object)
if (!isTRUE(check)) stop("Provide an object of class 'stanfit' using rstan::sampling() or rstan::vb()")
if("theta_tilde" %in% names(object) ) stop("Perform MCMC sampling using rstan::sampling() or rstan::vb()")
posterior_draws <- rstan::extract(object)
age_grps <- ncol(y_data[,-c(1:5)])
if(ncol(posterior_draws$cm_sample) != age_grps) stop( paste0("The number of rows in the age distribution table must be equal to ", age_grps) )
niters <- nrow(posterior_draws[["cm_sample"]])
plot_cm_list <- list()
plot_cm_indx <- 1
for (i in 1:age_grps){
for (j in 1:age_grps){
dt_cm_post <- data.frame(Posterior = posterior_draws[["cm_sample"]][,i, j])
p <- ggplot2::ggplot(dt_cm_post,
ggplot2::aes(x = Posterior),
fill = "gray") +
ggplot2::geom_density(alpha = 0.8, fill = "gray") +
ggplot2::scale_x_continuous(breaks = scales::pretty_breaks(n = 2)) +
ggplot2::labs(x = "",
y = "Density",
title = paste0("C[",i,",",j,"]")) +
ggplot2::theme(legend.position = "bottom",
legend.title = ggplot2::element_blank(),
...
)
plot_cm_list[[plot_cm_indx]] <- p
# Increment the index of stored graph:
plot_cm_indx <- plot_cm_indx + 1
}# End for
}# End for
plots_no_legend <- lapply(plot_cm_list[1:(age_grps^2)],
function(x) x + ggplot2::theme(legend.position="none"))
gridExtra::grid.arrange( gridExtra::arrangeGrob(grobs = plots_no_legend, nrow = age_grps) )
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.