#' Summary of stanigbm posterior output
#'
#' This function summarizes the MCMC output for \code{stanigbm} objects.
#'
#' @param object
#' An \code{R} object of class \code{stanigbm}.
#'
#' @param y_data data.frame;
#' age-specific mortality counts in time. See \code{data(age_specific_mortality_counts)}.
#'
#' @param ...
#' Additional arguments, to be passed to lower-level functions.
#'
#' @return A named list with elements \code{summary} and \code{c_summary},
#' which contain summaries for for all Markov chains merged and individual chains,
#' respectively. See \code{\link[rstan]{stanfit-method-summary}}.
#'
#' @examples
#' \donttest{
#' # Age-specific mortality/incidence count time series:
#' data(age_specific_mortality_counts)
#' data(age_specific_cusum_infection_counts)
#'
#' # Import the age distribution for Greece in 2020:
#' age_distr <- age_distribution(country = "Greece", year = 2020)
#'
#' # Lookup table:
#' lookup_table <- data.frame(Initial = age_distr$AgeGrp,
#' Mapping = c(rep("0-39", 8),
#' rep("40-64", 5),
#' rep("65+" , 3)))
#'
#' # Aggregate the age distribution table:
#' aggr_age <- aggregate_age_distribution(age_distr, lookup_table)
#'
#' # Import the projected contact matrix for Greece:
#' conmat <- contact_matrix(country = "GRC")
#'
#' # Aggregate the contact matrix:
#' aggr_cm <- aggregate_contact_matrix(conmat, lookup_table, aggr_age)
#'
#' # Aggregate the IFR:
#' ifr_mapping <- c(rep("0-39", 8), rep("40-64", 5), rep("65+", 3))
#'
#' aggr_age_ifr <- aggregate_ifr_react(age_distr, ifr_mapping, age_specific_cusum_infection_counts)
#'
#' # Infection-to-death distribution:
#' ditd <- itd_distribution(ts_length = nrow(age_specific_mortality_counts),
#' gamma_mean = 24.19231,
#' gamma_cv = 0.3987261)
#'
#' # Posterior sampling:
#'
#' rstan::rstan_options(auto_write = TRUE)
#' chains <- 1
#' options(mc.cores = chains)
#'
#' igbm_fit <- stan_igbm(y_data = age_specific_mortality_counts,
#' contact_matrix = aggr_cm,
#' age_distribution_population = aggr_age,
#' age_specific_ifr = aggr_age_ifr[[3]],
#' itd_distr = ditd,
#' incubation_period = 3,
#' infectious_period = 4,
#' likelihood_variance_type = "linear",
#' ecr_changes = 7,
#' prior_scale_x0 = 1,
#' prior_scale_x1 = 1,
#' prior_scale_contactmatrix = 0.05,
#' pi_perc = 0.1,
#' prior_volatility = normal(location = 0, scale = 1),
#' prior_nb_dispersion = exponential(rate = 1/5),
#' algorithm_inference = "sampling",
#' nBurn = 10,
#' nPost = 30,
#' nThin = 1,
#' chains = chains,
#' adapt_delta = 0.6,
#' max_treedepth = 14,
#' seed = 1)
#'
#' # print_summary <- summary(object = igbm_fit, y_data = age_specific_mortality_counts)$summary
#'}
#'
#' @export
#'
#' @method summary stanigbm
#'
summary.stanigbm <- function(object,
y_data,
...) {
check <- check_stanfit(object)
if (!isTRUE(check)) stop("Provide an object of class 'stanfit' using rstan::sampling() or rstan::vb()")
if("theta_tilde" %in% names(object) ) stop("Perform MCMC sampling using rstan::sampling() or rstan::vb()")
parameters <- c("pi",
"phiD",
"volatilities",
"cm_sample",
"beta0",
"beta_trajectory",
"E_casesByAge",
"E_deathsByAge",
"E_cases",
"E_deaths",
"Susceptibles")
cov_data <- list()
cov_data$A <- ncol(y_data[,-c(1:5)])
cov_data$n_obs <- nrow(y_data)
rest_params <-
c(parameters[1],
parameters[2],
paste0(parameters[3],"[", 1:cov_data$A,"]"),
parameters[5]
)
cm_params <-
paste0(parameters[4],
"[",
apply(expand.grid(1:cov_data$A,
1:cov_data$A), 1, paste, collapse = ","),
"]")
beta_params <-
paste0(parameters[6],
"[",
apply(expand.grid(1:cov_data$n_obs,
1:cov_data$A), 1, paste, collapse = ","),
"]")
E_casesAge_params <-
paste0(parameters[7],
"[",
apply(expand.grid(1:cov_data$n_obs,
1:cov_data$A), 1, paste, collapse = ","),
"]")
E_deathsAge_params <-
paste0(parameters[8],
"[",
apply(expand.grid(1:cov_data$n_obs,
1:cov_data$A), 1, paste, collapse = ","),
"]")
E_cases_params <-
paste0(parameters[9], "[", 1:cov_data$n_obs, "]")
E_deaths_params <-
paste0(parameters[10], "[", 1:cov_data$n_obs, "]")
out <- summary(object,
pars = c("lp__",
rest_params,
cm_params,
beta_params,
E_casesAge_params,
E_deathsAge_params,
E_cases_params,
E_deaths_params
),
...)
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.