#' @export
makeRLearner.classif.plr = function() {
makeRLearnerClassif(
cl = "classif.plr",
package = "stepPlr",
par.set = makeParamSet(
makeNumericLearnerParam(id = "lambda", default = 1e-4, lower = 0),
makeDiscreteLearnerParam(id = "cp.type", values = c("bic", "aic"), default = "bic"),
makeNumericLearnerParam(id = "cp", lower = 0, default = 2)
),
properties = c("twoclass", "numerics", "factors", "prob", "weights"),
name = "Logistic Regression with a L2 Penalty",
short.name = "plr",
note = "AIC and BIC penalty types can be selected via the new parameter `cp.type`.",
callees = "plr"
)
}
#' @export
trainLearner.classif.plr = function(.learner, .task, .subset, .weights = NULL, cp.type, cp, ...) {
d = getTaskData(.task, .subset, target.extra = TRUE, recode.target = "01")
# cp.type has preference
if (!missing(cp.type)) {
cp2 = cp.type
} else if (!missing(cp)) {
cp2 = cp
} else {
cp2 = NULL
}
args = list(x = d$data, y = d$target)
args$cp = cp2
if (!is.null(.weights)) {
args$weights = .weights
}
args = c(args, list(...))
do.call(stepPlr::plr, args)
}
#' @export
predictLearner.classif.plr = function(.learner, .model, .newdata, ...) {
p = stepPlr::predict.plr(.model$learner.model, newx = .newdata, type = "response", ...)
levs = c(.model$task.desc$negative, .model$task.desc$positive)
if (.learner$predict.type == "prob") {
y = propVectorToMatrix(p, levs)
return(y)
} else {
p = as.factor(ifelse(p > 0.5, levs[2L], levs[1L]))
names(p) = NULL
return(p)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.