#' @export
makeRLearner.regr.glm = function() {
makeRLearnerRegr(
cl = "regr.glm",
package = "stats",
par.set = makeParamSet(
makeDiscreteLearnerParam(id = "family", default = "gaussian",
values = c("gaussian", "Gamma", "inverse.gaussian", "poisson")),
makeDiscreteLearnerParam(id = "gaussian.link", default = "identity",
values = c("identity", "log", "inverse"), requires = quote(family == "gaussian")),
makeDiscreteLearnerParam(id = "Gamma.link", default = "inverse",
values = c("inverse", "identity", "log"), requires = quote(family == "Gamma")),
makeDiscreteLearnerParam(id = "poisson.link", default = "log",
values = c("log", "identity", "sqrt"), requires = quote(family == "poisson")),
makeDiscreteLearnerParam(id = "inverse.gaussian.link", default = "1/mu^2",
values = c("1/mu^2", "inverse", "identity", "log"), requires = quote(family == "inverse.gaussian")),
# FIXME: default for start, mustart and etastart is family and link dependet (see family$initialize)
# FIXME: length is data dependent (length = number of predictors + 1)
makeNumericVectorLearnerParam(id = "start"),
# FIXME: len for etastart and mustart is data dependet (length = number of cases)
makeNumericVectorLearnerParam(id = "etastart"),
makeNumericVectorLearnerParam(id = "mustart"),
makeNumericVectorLearnerParam(id = "offset"),
makeNumericLearnerParam(id = "epsilon", default = 1e-8),
makeIntegerLearnerParam(id = "maxit", default = 25L),
makeLogicalLearnerParam(id = "trace", default = FALSE, tunable = FALSE),
makeLogicalLearnerParam(id = "model", default = TRUE, tunable = FALSE),
makeUntypedLearnerParam(id = "method", default = "glm.fit", tunable = FALSE),
makeLogicalLearnerParam(id = "x", default = FALSE, tunable = FALSE),
makeLogicalLearnerParam(id = "y", default = TRUE, tunable = FALSE)
),
par.vals = list(
family = "gaussian",
model = FALSE
),
properties = c("numerics", "factors", "se", "weights"),
name = "Generalized Linear Regression",
short.name = "glm",
note = "'family' must be a character and every family has its own link, i.e. family = 'gaussian', link.gaussian = 'identity', which is also the default. We set 'model' to FALSE by default to save memory.",
callees = c("glm", "glm.control", "gaussian", "poisson", "Gamma", "inverse.gaussian")
)
}
#' @export
trainLearner.regr.glm = function(.learner, .task, .subset, .weights = NULL, epsilon, maxit, trace, family,
gaussian.link = "identity", poisson.link = "log", Gamma.link = "inverse", inverse.gaussian.link = "1/mu2", ...) {
ctrl = learnerArgsToControl(stats::glm.control, epsilon, maxit, trace)
d = getTaskData(.task, .subset)
f = getTaskFormula(.task)
family = switch(family,
gaussian = stats::gaussian(link = make.link(gaussian.link)),
poisson = stats::poisson(link = make.link(poisson.link)),
Gamma = stats::Gamma(link = make.link(Gamma.link)),
inverse.gaussian = stats::inverse.gaussian(link = make.link(inverse.gaussian.link))
)
if (is.null(.weights)) {
m = stats::glm(f, data = d, control = ctrl, family = family, ...)
} else {
m = stats::glm(f, data = d, control = ctrl, weights = .weights, family = family, ...)
}
return(m)
}
#' @export
predictLearner.regr.glm = function(.learner, .model, .newdata, ...) {
se.fit = .learner$predict.type == "se"
p = predict(.model$learner.model, newdata = .newdata, type = "response", se.fit = se.fit, ...)
if (se.fit) {
p = cbind(p$fit, p$se.fit)
}
return(p)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.