#' @export
makeRLearner.regr.h2o.glm = function() {
makeRLearnerRegr(
cl = "regr.h2o.glm",
package = "h2o",
par.set = makeParamSet(
makeIntegerLearnerParam("max_iterations", lower = 0L, default = 50L),
makeNumericLearnerParam("beta_epsilon", lower = 0, default = 0),
makeLogicalLearnerParam("standardize", default = TRUE),
makeDiscreteLearnerParam("solver", values = c("IRLSM", "L_BFGS"), default = "IRLSM"),
makeDiscreteLearnerParam("link", values = c("identity", "log", "inverse"), default = "identity"),
makeNumericLearnerParam("alpha", lower = 0, upper = 1, default = 0.5),
makeNumericLearnerParam("lambda", lower = 0, default = 1e-5),
makeLogicalLearnerParam("lambda_search", default = FALSE),
makeIntegerLearnerParam("nlambdas", lower = 1L,
requires = quote(lambda_search == TRUE)),
makeNumericLearnerParam("lambda_min_ratio", lower = 0, upper = 1, # data dep default
requires = quote(lambda_search == TRUE)),
makeUntypedLearnerParam("beta_constraints"),
makeLogicalLearnerParam("intercept", default = TRUE)
),
properties = c("numerics", "factors", "weights", "missings"),
name = "h2o.glm",
short.name = "h2o.glm",
note = '`family` is always set to `"gaussian"`. The default value of `missing_values_handling` is `"MeanImputation"`, so missing values are automatically mean-imputed.',
callees = "h2o.glm"
)
}
#' @export
trainLearner.regr.h2o.glm = function(.learner, .task, .subset, .weights = NULL, ...) {
# check if h2o connection already exists, otherwise start one
conn.up = tryCatch(h2o::h2o.getConnection(), error = function(err) {
return(FALSE)
})
if (!inherits(conn.up, "H2OConnection")) {
h2o::h2o.init()
}
y = getTaskTargetNames(.task)
x = getTaskFeatureNames(.task)
d = getTaskData(.task, subset = .subset)
wcol = NULL
if (!is.null(.weights)) {
d$.mlr.weights = .weights
wcol = ".mlr.weights"
}
h2of = h2o::as.h2o(d)
h2o::h2o.glm(y = y, x = x, training_frame = h2of, family = "gaussian", weights_column = wcol, ...)
}
#' @export
predictLearner.regr.h2o.glm = function(.learner, .model, .newdata, ...) {
m = .model$learner.model
h2of = h2o::as.h2o(.newdata)
p = h2o::h2o.predict(m, newdata = h2of, ...)
p.df = as.data.frame(p)
return(p.df$predict)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.