Description Usage Arguments Details Value Examples
calculate the information value for dataframe, with multiple binning methods
1 |
Data |
data frame with at least two columns |
keeplist |
Name of the Independent Variables keept for capping, #' if missing then for all Independent Variables |
y |
Name of the dependent Variables |
bintype |
there are three binning types: #' Bucket Binning ('bucket'), bucket binning creates equal-length bins and assigns the data to one of these bins. #' Quantile Binning ('quantile'), quantile binning aims to assign the same number of observations to each bin, #' if the number of observations is evenly divisible by the number of bins. #' Optimal Binning ('opt'), optimal Binning aims to assign each bin with classified optimized results. |
p |
the minumume quantile for a binning interval, defult is 0.1 #' for 'bucket', the binning number would be 1/p, the default number is 10 #' for 'quantile', the binning number would be 1/p, the default number is 10 #' for 'opt', the binning number would be restults from Conditional Inference Trees |
#' NOTE: There are multiple R packages to calulcate IV, but there is no one for credit score model area. #' To writing this code, I have reviewed different R packages, including smbinning.R, woe.R, creat_iv.R, iv.R, mult.R #' the output format from smbinning.R is very easy to understand, so I adopt the similar format of the output, #' but smbinning.R is only for optmized binning (bins always <5 in real work), but sometimes we need quantile/bucket binning in credit models. #' Also smbinning.R would only work on single variable, the ivdf would work on the whole set of the variables #' creat_iv.R is not suitable to work on dataframe. mult.R only provides IV seleclting, but you cannot change the binning size or binng method. #' The following code is improved based on 4 R packages related to binning and WOE area from others' previous work, great thanks to them.
#' test: #' data is from the Titanic project https://www.kaggle.com/c/titanic/data #' traindata <- read.csv('train.csv',header=T,na.strings=c("")) #' Data <- subset(traindata,select=c(2,3,5,6,7,8,10,12)) #' library(partykit) #' library(gsubfn) #' library(sqldf) #' binbyopt(Data,y='Survived',x='Age',p=0.1) #' ivdf(Data,y='Survived') #' ivdf(Data,y='Survived',bintype='quantile')
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (Data, keeplist = NULL, y, bintype = "opt", p = NULL)
{
if (is.null(keeplist)) {
keeplist <- names(Data)[names(Data) != y]
}
nums <- sapply(Data, is.numeric)
Data <- Data[, nums]
if (is.null(p)) {
p <- 0.1
}
binbyopt <- function(Data, y, x, p = p) {
ctree <- ctree(formula(paste(y, "~", x)), data = Data,
na.action = na.exclude, control = ctree_control(minbucket = ceiling(round(p *
nrow(Data)))))
bins <- width(ctree)
if (bins < 2) {
return("bins < 2 ")
}
bandlist <- data.frame(matrix(ncol = 0, nrow = 0))
n <- length(ctree)
for (i in 1:n) {
bandlist <- rbind(bandlist, ctree[i]$node$split$breaks)
}
j <- which(names(df) == x)
mincutpoint <- min(Data[, x], na.rm = T)
maxcutpoint <- max(Data[, x], na.rm = T)
bandlist <- rbind(bandlist, maxcutpoint, mincutpoint)
bandlist <- bandlist[order(bandlist[, 1]), ]
bandlist <- ifelse(bandlist < 0, trunc(10000 * bandlist)/10000,
ceiling(10000 * bandlist)/10000)
ivt <- data.frame(matrix(ncol = 0, nrow = 0))
n <- length(bandlist)
Total <- fn$sqldf("select count(*) from Data where $y is not null and $y in (0,1) ")
G <- fn$sqldf("select count(*) from Data where $y is not null and $y=1 ")
B <- fn$sqldf("select count(*) from Data where $y is not null and $y=0 ")
LnGB = log(G/B)
for (i in 2:n) {
if (i == 2) {
cutpointlow = bandlist[i - 1] - 0.01
}
else {
cutpointlow = bandlist[i - 1]
}
cutpointhigh = bandlist[i]
ivt = rbind(ivt, fn$sqldf("select '<= $cutpointhigh' as Cutpoint,\n sum(case when $x > $cutpointlow and $x <= $cutpointhigh and $y in (1,0) then 1 else 0 end) as CntRec,\n sum(case when $x > $cutpointlow and $x <= $cutpointhigh and $y=1 then 1 else 0 end) as CntGood,\n sum(case when $x > $cutpointlow and $x <= $cutpointhigh and $y=0 then 1 else 0 end) as CntBad,\n sum(case when $x <= $cutpointhigh and $y in (1,0) then 1 else 0 end) as CntCumRec,\n sum(case when $x <= $cutpointhigh and $y=1 then 1 else 0 end) as CntCumGood,\n sum(case when $x <= $cutpointhigh and $y=0 then 1 else 0 end) as CntCumBad\n from Data where $x is not NULL and $y is not NULL"))
}
x.na = fn$sqldf("select count(*) from Data where $x is null")
if (x.na > 0) {
ivt = rbind(ivt, fn$sqldf("select 'Missing' as Cutpoint,\n sum(case when $x is NULL and $y in (1,0) then 1 else 0 end) as CntRec,\n sum(case when $x is NULL and $y=1 then 1 else 0 end) as CntGood,\n sum(case when $x is NULL and $y=0 then 1 else 0 end) as CntBad,\n sum(case when $y in (1,0) then 1 else 0 end) as CntCumRec,\n sum(case when $y =1 then 1 else 0 end) as CntCumGood,\n sum(case when $y =0 then 1 else 0 end) as CntCumBad\n from Data where $y is not NULL"))
}
else {
ivt = rbind(ivt, fn$sqldf("select 'Missing' as Cutpoint,\n 0 as CntRec,\n 0 as CntGood,\n 0 as CntBad,\n sum(case when $y in (1,0) then 1 else 0 end) as CntCumRec,\n sum(case when $y =1 then 1 else 0 end) as CntCumGood,\n sum(case when $y =0 then 1 else 0 end) as CntCumBad\n from Data where $y is not NULL"))
}
options(scipen = 999)
ivt$PctRec <- round(ivt$CntRec/Total[1, 1], 4)
ivt$GoodRate <- round(ivt$CntGood/ivt$CntRec, 4)
ivt$BadRate <- round(ivt$CntBad/ivt$CntRec, 4)
ivt$Odds <- round(ivt$CntGood/ivt$CntBad, 4)
ivt$LnOdds <- round(log(ivt$CntGood/ivt$CntBad), 4)
ivt$WoE <- round(log(ivt$CntGood/ivt$CntBad) - LnGB[1,
1], 4)
ivt$IV <- round(ivt$WoE * (ivt$CntGood/G[1, 1] - ivt$CntBad/B[1,
1]), 4)
totalwoe <- sum(ivt$WoE)
iv <- 0
for (k in 1:(nrow(ivt))) {
if (is.finite(ivt[k, "IV"])) {
i = ivt[k, "IV"]
}
else {
i = 0
}
iv = iv + i
}
list(x = x, col_id = j, WOElist = ivt, iv = iv, ctree = ctree,
bands = bandlist, missing = x.na[1, 1])
}
binbyquantile <- function(Data, y, x, p = p) {
quantiles <- quantile(Data[is.na(Data[, x]) == 0, x],
seq(0, 1, p))
bins = length(quantiles)
if (bins < 2) {
return("bins < 2 ")
}
bandlist = data.frame(matrix(ncol = 0, nrow = 0))
for (i in 1:bins) {
bandlist = rbind(bandlist, quantiles[i])
}
bandlist = bandlist[order(bandlist[, 1]), ]
bandlist = ifelse(bandlist < 0, trunc(10000 * bandlist)/10000,
ceiling(10000 * bandlist)/10000)
j = which(names(df) == x)
ivt = data.frame(matrix(ncol = 0, nrow = 0))
n = length(bandlist)
Total <- fn$sqldf("select count(*) from Data where $y is not null and $y in (0,1) ")
G <- fn$sqldf("select count(*) from Data where $y is not null and $y=1 ")
B <- fn$sqldf("select count(*) from Data where $y is not null and $y=0 ")
LnGB = log(G/B)
for (i in 2:n) {
if (i == 2) {
cutpointlow = bandlist[i - 1] - 0.01
}
else {
cutpointlow = bandlist[i - 1]
}
cutpointhigh = bandlist[i]
ivt = rbind(ivt, fn$sqldf("select '<= $cutpointhigh' as Cutpoint,\n sum(case when $x > $cutpointlow and $x <= $cutpointhigh and $y in (1,0) then 1 else 0 end) as CntRec,\n sum(case when $x > $cutpointlow and $x <= $cutpointhigh and $y=1 then 1 else 0 end) as CntGood,\n sum(case when $x > $cutpointlow and $x <= $cutpointhigh and $y=0 then 1 else 0 end) as CntBad,\n sum(case when $x <= $cutpointhigh and $y in (1,0) then 1 else 0 end) as CntCumRec,\n sum(case when $x <= $cutpointhigh and $y=1 then 1 else 0 end) as CntCumGood,\n sum(case when $x <= $cutpointhigh and $y=0 then 1 else 0 end) as CntCumBad\n from Data where $x is not NULL and $y is not NULL"))
}
x.na = fn$sqldf("select count(*) from Data where $x is null")
if (x.na > 0) {
ivt = rbind(ivt, fn$sqldf("select 'Missing' as Cutpoint,\n sum(case when $x is NULL and $y in (1,0) then 1 else 0 end) as CntRec,\n sum(case when $x is NULL and $y=1 then 1 else 0 end) as CntGood,\n sum(case when $x is NULL and $y=0 then 1 else 0 end) as CntBad,\n sum(case when $y in (1,0) then 1 else 0 end) as CntCumRec,\n sum(case when $y =1 then 1 else 0 end) as CntCumGood,\n sum(case when $y =0 then 1 else 0 end) as CntCumBad\n from Data where $y is not NULL"))
}
else {
ivt = rbind(ivt, fn$sqldf("select 'Missing' as Cutpoint,\n 0 as CntRec,\n 0 as CntGood,\n 0 as CntBad,\n sum(case when $y in (1,0) then 1 else 0 end) as CntCumRec,\n sum(case when $y =1 then 1 else 0 end) as CntCumGood,\n sum(case when $y =0 then 1 else 0 end) as CntCumBad\n from Data where $y is not NULL"))
}
options(scipen = 999)
ivt$PctRec <- round(ivt$CntRec/Total[1, 1], 4)
ivt$GoodRate <- round(ivt$CntGood/ivt$CntRec, 4)
ivt$BadRate <- round(ivt$CntBad/ivt$CntRec, 4)
ivt$Odds <- round(ivt$CntGood/ivt$CntBad, 4)
ivt$LnOdds <- round(log(ivt$CntGood/ivt$CntBad), 4)
ivt$WoE <- round(log(ivt$CntGood/ivt$CntBad) - LnGB[1,
1], 4)
ivt$IV <- round(ivt$WoE * (ivt$CntGood/G[1, 1] - ivt$CntBad/B[1,
1]), 4)
totalwoe <- sum(ivt$WoE)
iv <- 0
for (k in 1:(nrow(ivt))) {
if (is.finite(ivt[k, "IV"])) {
i = ivt[k, "IV"]
}
else {
i = 0
}
iv = iv + i
}
list(x = x, col_id = j, WOElist = ivt, iv = iv, bands = bandlist,
missing = x.na[1, 1])
}
binbyfix <- function(Data, y, x, p = p) {
j = which(names(df) == x)
mincutpoint = min(Data[, x], na.rm = T)
maxcutpoint = max(Data[, x], na.rm = T)
fixstep = (maxcutpoint - mincutpoint) * p
bandlist = seq(mincutpoint, maxcutpoint, fixstep)
bandlist = ifelse(bandlist < 0, trunc(10000 * bandlist)/10000,
ceiling(10000 * bandlist)/10000)
ivt = data.frame(matrix(ncol = 0, nrow = 0))
n = length(bandlist)
Total <- fn$sqldf("select count(*) from Data where $y is not null and $y in (0,1) ")
G <- fn$sqldf("select count(*) from Data where $y is not null and $y=1 ")
B <- fn$sqldf("select count(*) from Data where $y is not null and $y=0 ")
LnGB = log(G/B)
for (i in 2:n) {
if (i == 2) {
cutpointlow = bandlist[i - 1] - 0.01
}
else {
cutpointlow = bandlist[i - 1]
}
cutpointhigh = bandlist[i]
ivt = rbind(ivt, fn$sqldf("select '<= $cutpointhigh' as Cutpoint,\n sum(case when $x > $cutpointlow and $x <= $cutpointhigh and $y in (1,0) then 1 else 0 end) as CntRec,\n sum(case when $x > $cutpointlow and $x <= $cutpointhigh and $y=1 then 1 else 0 end) as CntGood,\n sum(case when $x > $cutpointlow and $x <= $cutpointhigh and $y=0 then 1 else 0 end) as CntBad,\n sum(case when $x <= $cutpointhigh and $y in (1,0) then 1 else 0 end) as CntCumRec,\n sum(case when $x <= $cutpointhigh and $y=1 then 1 else 0 end) as CntCumGood,\n sum(case when $x <= $cutpointhigh and $y=0 then 1 else 0 end) as CntCumBad\n from Data where $x is not NULL and $y is not NULL"))
}
x.na = fn$sqldf("select count(*) from Data where $x is null")
if (x.na > 0) {
ivt = rbind(ivt, fn$sqldf("select 'Missing' as Cutpoint,\n sum(case when $x is NULL and $y in (1,0) then 1 else 0 end) as CntRec,\n sum(case when $x is NULL and $y=1 then 1 else 0 end) as CntGood,\n sum(case when $x is NULL and $y=0 then 1 else 0 end) as CntBad,\n sum(case when $y in (1,0) then 1 else 0 end) as CntCumRec,\n sum(case when $y =1 then 1 else 0 end) as CntCumGood,\n sum(case when $y =0 then 1 else 0 end) as CntCumBad\n from Data where $y is not NULL"))
}
else {
ivt = rbind(ivt, fn$sqldf("select 'Missing' as Cutpoint,\n 0 as CntRec,\n 0 as CntGood,\n 0 as CntBad,\n sum(case when $y in (1,0) then 1 else 0 end) as CntCumRec,\n sum(case when $y =1 then 1 else 0 end) as CntCumGood,\n sum(case when $y =0 then 1 else 0 end) as CntCumBad\n from Data where $y is not NULL"))
}
options(scipen = 999)
ivt$PctRec <- round(ivt$CntRec/Total[1, 1], 4)
ivt$GoodRate <- round(ivt$CntGood/ivt$CntRec, 4)
ivt$BadRate <- round(ivt$CntBad/ivt$CntRec, 4)
ivt$Odds <- round(ivt$CntGood/ivt$CntBad, 4)
ivt$LnOdds <- round(log(ivt$CntGood/ivt$CntBad), 4)
ivt$WoE <- round(log(ivt$CntGood/ivt$CntBad) - LnGB[1,
1], 4)
ivt$IV <- round(ivt$WoE * (ivt$CntGood/G[1, 1] - ivt$CntBad/B[1,
1]), 4)
totalwoe <- sum(ivt$WoE)
iv <- 0
for (k in 1:(nrow(ivt))) {
if (is.finite(ivt[k, "IV"])) {
i = ivt[k, "IV"]
}
else {
i = 0
}
iv = iv + i
}
list(x = x, col_id = j, WOElist = ivt, iv = iv, bands = bandlist,
missing = x.na[1, 1])
}
ncol = length(keeplist)
if (bintype == "opt") {
ivlist <- lapply(keeplist, function(x) {
binbyopt(Data, y, x, p = p)
})
}
if (bintype == "quantile") {
ivlist <- lapply(keeplist, function(x) {
binbyquantile(Data, y, x, p = p)
})
}
if (bintype == "bucket") {
ivlist <- lapply(keeplist, function(x) {
binbyfix(Data, y, x, p = p)
})
}
ivlist
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.