Macarron | R Documentation |
Macarron
Macarron(
input_abundances,
input_annotations,
input_metadata,
input_taxonomy,
output = "Macarron_output",
metadata_variable = 1,
min_prevalence = 0.7,
execution_mode = "serial",
standard_identifier = 1,
anchor_annotation = 2,
min_module_size = NULL,
fixed_effects = NULL,
random_effects = NULL,
reference = NULL,
cores = 1,
plot_heatmap = TRUE,
plot_scatter = FALSE,
heatmap_first_n = 50,
show_best = TRUE,
priority_threshold = 0.9,
per_module = 10,
per_phenotype = 1000,
only_characterizable = TRUE
)
input_abundances |
a comma-delimited file or dataframe (features x samples) containing metabolic feature intensities (abundances). |
input_annotations |
a comma-delimited file or dataframe (features x annotations) containing available feature annotations. |
input_metadata |
a comma-delimited file or dataframe (samples x metadata) containing sample metadata. |
input_taxonomy |
a comma-delimited file or dataframe containing the chemical class and subclass information of annotated features. |
output |
name of the folder where Macarron output files will be written. Default: "Macarron_output". |
metadata_variable |
Name or index of the column that identifies the phenotypes/conditions in the study. Default: Column 1 of metadata dataframe. |
min_prevalence |
prevalence threshold (percentage). Default = 0.7. |
execution_mode |
BiocParallel execution mode. Options: "serial" or "multi" Default = "serial". |
standard_identifier |
Name or index of column containing HMDB or PubChem IDs. Default: Column 1 in annotation dataframe. |
anchor_annotation |
Name or index of column containing common names of the annotated metabolite. Default: Column 2 of annotation dataframe. |
min_module_size |
Integer that defines the size of the smallest covariance module. Default: Cube root of number of prevalent metabolic features. |
fixed_effects |
Covariates for linear modeling with MaAsLin2. Default: All columns of metadata dataframe. |
random_effects |
Random effects for linear modeling with MaAsLin2. Default: NULL. |
reference |
Reference category (factor) in categorical metadata covariates containing three or more levels. Must be provided as a string of 'covariate,reference' semi-colon delimited for multiple covariates. |
cores |
MaAsLin2 option-The number of R processes to be run in parallel. |
plot_heatmap |
MaAslin2 option-Generate a heatmap for the significant associations. Default: TRUE |
plot_scatter |
MaAslin2 option-Generate scatter plots for the significant associations. Default: FALSE |
heatmap_first_n |
MaAslin2 option-Generate heatmap for top n significant associations. Default = 50 |
show_best |
write 1000 or fewer highly prioritized metabolic features into a separate file. Default: TRUE |
priority_threshold |
cut-off of priority score for showing highly prioritized features. Default = 0.9 |
per_module |
show first n highly prioritized features in a module. Default = 10 |
per_phenotype |
show highly prioritized n features per phenotype/condition. Default = 1000 |
only_characterizable |
show highly prioritized features in modules which contain at least one annotated metabolite. Default = TRUE |
mac.result dataframes containing metabolic features listed according to their priority (potential bioactivity) in a phenotype of interest.
prism_abundances = system.file("extdata", "demo_abundances.csv", package="Macarron")
prism_annotations = system.file("extdata", "demo_annotations.csv", package="Macarron")
prism_metadata = system.file("extdata", "demo_metadata.csv", package="Macarron")
met_taxonomy = system.file("extdata", "demo_taxonomy.csv", package="Macarron")
mets.prioritized <- Macarron::Macarron(input_abundances = prism_abundances,
input_annotations = prism_annotations,
input_metadata = prism_metadata,
input_taxonomy = met_taxonomy)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.